European Conference of Defence and the Environment

ECDE 2024

CONSTANTINOS HADJISAVVAS The European Defence Agency

Defence, climate and environment: Coinciding, not conflicting possibilities. 12-13 June 2024, Oslo, Norway

EDA's Drive for Defence Energy Resilience in a Climate-Neutral European Union

Dr Constantinos HADJISAVVAS

European Defence Energy Network EDA Project Officer Energy Project Manager of EU-funded programmes (CF SEDSS, Horizon 2020 and Symbiosis, Horizon Europe) <u>constantinos.hadjisavvas@eda.europa.eu</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 882171

Boosting the defence energy transition

Contents

- 1. EDA at a glance
- 2. EU climate-security nexus

3. Sustainable energy and climate change adaptation in defence

4. Reflections

Access to EDA information

European Defence Energy Network

1. EDA at a glance

EU Defence Ministers approve reinforced mandate for EDA

EDA LONG-TERM REVIEW 2024

Interfacing with EU civilian and defence policies, voicing Ministries of Defence's joint positions

Identifying shared needs and priorities at EU level to ensure that EU Member States' armed forces have the capabilities they actually require

DEFENCE

NEXUS

Enabling collaborative defence research, technology, and innovation, to prepare the future of EU defence

EDA's Administrative Arrangements

NORWAY MoD

SWITZERLAND MoD Since 2012

SERBIA MoD Since 2013

UKRAINE MoD Since 2015

U.S. DoD Since 2023

Since 2006

ESA

OCCAR Since 2011

OCCAR

Since 2012

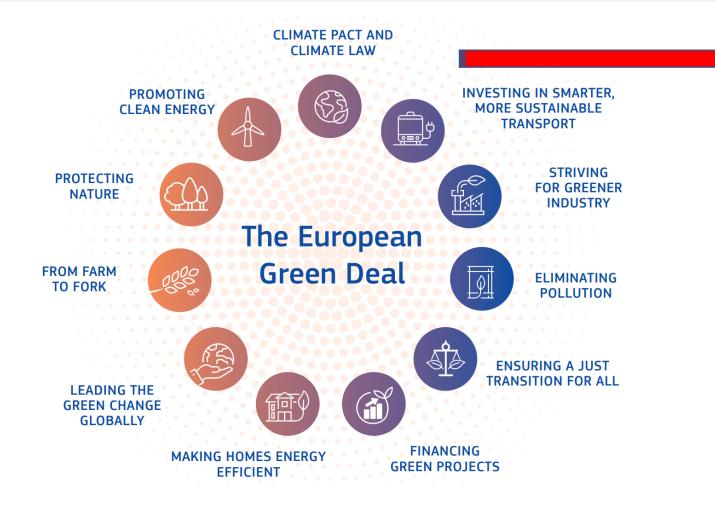
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 882171

Aggregating demand towards joint procurement, to fill capabilities shortfalls

Harmonising requirements and engaging in joint capability development, while ensuring interoperability

Boosting the defence energy transition

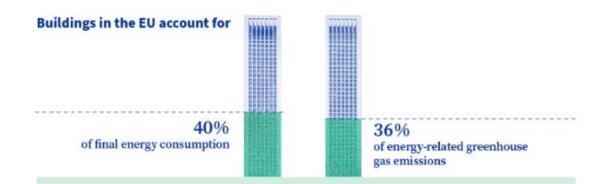
2. EU climate-security nexus



European Defence Energy Network

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 882171

Make EU the first climate-neutral continent by 2050


...reduce EU greenhouse gas emissions by at least 55% by 2030 and reach climate neutrality by 2050...

New proposal – COM(2024) 63 final 90% reduction in greenhouse gas emissions....by 2040

EUROPEAN DEFENCE

Paving the Way for Zero-Emission Buildings in the EU

75% of existing buildings

are inefficient in terms of energy and will require energy renovation on a large scale

EUROPEAN DEFENCE AGENCY

Existing buildings:

 should be transformed into zeroemission buildings by 2050

EU's Commitment to a Sustainable Future: Scaling up renewable energy

A more ambitious EU target for 2030 wind powe renewable solar powe part of waste 32% 42.5% biofuel hydro power Types of renewable energy Old 2030 target New 2030 target tidal powe heat pumps the state at least 32% share 42.5% share + 2.5% top-up eotherma

energy

EU Transport Sector: Roadmap to 90% GHG reduction by 2050

Transport is responsible for almost 25% of greenhouse gas (GHG) emissions in the EU.

Making transport sustainable for all

Our transition to greener mobility will offer clean, accessible and affordable transport even in the most remote areas.

55%50%0reduction of emissions fromreduction of emissions fromemissions from new carscars by 2030vans by 2030by 2035

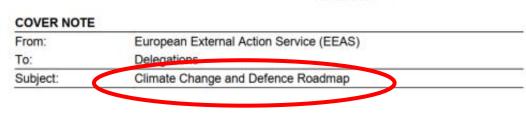
Boosting the defence energy transition

3. Sustainable energy and climate change adaptation in defence

European Defence Energy Network

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 882171

EU Climate Change and Defence Roadmap



Brussels, 9 November 2020 (OR. en)

A European Green Deal Striving to be the first climate-neutral continent

12741/20

COPS 389 CFSP/PESC 977 CSDP/PSDC 545 POLMIL 171 CLIMA 289 ENV 694 RELEX 870

Delegations will find attached document EEAS(2020)1251.

- ... a set of concrete actions addressing the links between climate change and defence...
- ...address three interlinked work strands
 - ✓ Operational dimension
 - ✓ Capability development
 - ✓ Partnerships and multilateralism

Encl.: EEAS(2020)1251

A Strategic Compass for Security and Defence

Brussels, 21 March 2022 (OR. en)

7371/22

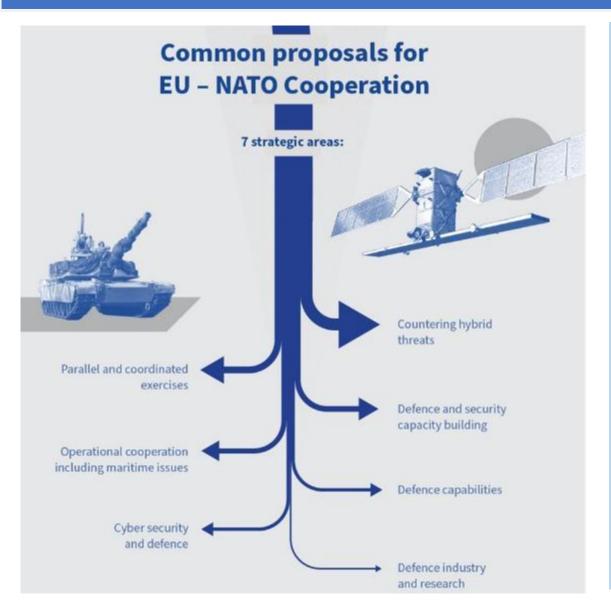
COPS 130	PROCIV 36
POLMIL 72	ESPACE 27
EUMC 95	POLMAR 26
CSDP/PSDC 155	MARE 24
CFSP/PESC 394	COMAR 23
CIVCOM 50	COMPET 165
RELEX 373	IND 77
JAI 371	RECH 144
HYBRID 27	COTER 79
DISINFO 24	POLGEN 41
CYBER 87	CSC 111

OUTCOME OF PROCEEDINGS

From:	General Secretariat of the Council
To:	Delegations
Subject:	A Strategic Compass for Security and Defence - For a European Union that protects its citizens, values and interests and contributes to international peace and security

Delegations will find in the Annex the Strategic Compass for Security and Defence - For a European Union that protects its citizens, values and interests and contributes to international peace and security, as approved by the Council at its meeting held on 21 March 2022.

...the Compass calls upon Member States to: develop <u>national strategies to</u> prepare the armed forces for climate change



Energy Network

AGENCY

EU and NATO cooperation – Joint Declarations (2016, 2018 and 2023)

EU-NATO joint declaration 2018

- counter-terrorism
- women, peace and security
- military mobility

EU-NATO joint declaration 2023

- the growing geostrategic competition
- resilience and the protection of critical infrastructure
- emerging and disruptive technologies
- the security implications of climate change
- space
- foreign information manipulation and interference

EDA–U.S. Department of Defense Administrative Arrangement Signed

Initial activities of cooperation include, inter alia, the impact of climate change on defence.

A European Green Deal

Striving to be the first climate-neutral continent

European Commission

EDA Energy and Environment Capability Tecnology Group EnE CapTech

Energy Defence Consultation Forum CF SEDSS H2020 funded

Offshore Renewable Energy in Defence SYMBIOSIS Horizon Europe funded

Incubation **Forum for** Circular **Economy in European** Defence **IF CEED Co-funded LIFE** programme and Luxembourg

cross-cutting

EU-funded defence energy-related projects run by EDA

Consultation Forum for Sustainable Energy in the Defence and Security Sector

(CF SEDSS)

- A European Commission initiative managed by EDA to assist the EU MoDs and relevant stakeholders to move towards green, resilient, and efficient energy models.
- Horizon 2020
- Phase III (Oct 2019 Sept 2024)
- EUR 3.2 M

Symbiosis

(Offshore Renewable Energy for Defence)

- Building on the EDA's Energy Consultation Forum's output, DG ENER and EDA developed the Symbiosis project with the aim to foster the co-existence between offshore renewable energy projects and defence operations and systems in European maritime spaces.
- Horizon Europe
- October 2022 March 2025
- EUR 2 M

Consultation Forum for Sustainable Energy in the Defence and Security Sector (CF SEDSS) – since 2015 (3.2 million Euro)

a European Commission initiative managed by EDA to assist the EU MoDs to move towards green, resilient, and efficient energy models

CF SEDSS III research focus (1/2)

WG-1 ENERGY EFFICIENCY & BUILDINGS PERFORMANCE

WG-2 RENEWABLE ENERGY SOURCES

Impact of Trends in defence Green public energy activities on Decarbonising procurement efficiency and the defence offshore options in buildings renewable sector performance defence energy in EU **Barriers** to developments success and Energy solutions to storage implementing selection energy decision efficiency support tool measures in buildings

European Defence Energy Network

20

CF SEDSS III research focus (2/2)

WG-3 PROTECTION OF CRITICAL ENERGY INFRASTRUCTURE

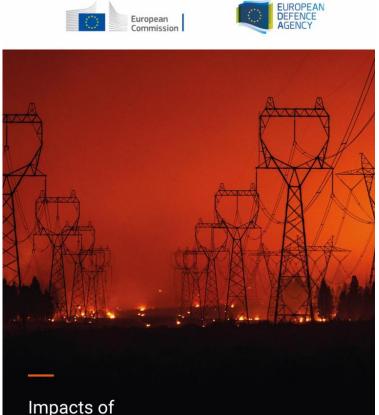
WG-TRANSVERSAL WORKING GROUP

Impacts of pandemics on defencerelated critical energy infrastructure Impact of finance, markets and ownership on the operational secur ity of critical energy supply and infrastructure

Protection of offshore CEI beyond national sovereignty

EUROPEAN DEFENCE AGENCY

European Defence Energy Network Increasing energy security through life cycle assessment and material flow analysis European Defence Sustainable Energy


EU-led Competence Centre on Climate Change, Security and Defence

Energy Profiles (EDESEP)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 882171

EDA-JRC Climate Change Study: Key Recommendations

Impacts of climate change on defence-related critical energy infrastructure

Dr. Ricardo Tavares da Costa (JRC) Dr. Elisabeth Krausmann (JRC) Dr. Constantinos Hadjisavvas (EDA) 03

04

05

European Defence Energy Network ✓ Establish a multi-stakeholder forum on defence, energy and climate

Establish a defence, energy and climate R&D programme

□ ✓ Develop National Defence Strategies on Climate Change

2 ✓ Deliver training in energy and climate mitigation and adaptation

Monitor energy performance and emissions √

4 ✓ Implement climate risk management

1 🗸 Develop an EU Defence Strategy on Climate Change

02 Output Develop guidance for managing climate risk, energy and carbon footprints

Establish an EU-led Competence Centre for defence, energy and climate

EU

MoDs

FORTIFYING DEFENCE

Strengthening Critical Energy Infrastructure against Hybrid Threats

> Dr. Giannopoulos G Dr, Jungwirth R Dr. Hadjisavvas C et. al.

- investigate the **nature and** ٠ development of hybrid threats, including new tactics and targets to strengthen the resilience of defence-related CEI;
- address the knowledge gap in this area;
- provide the EU and MoDs with • recommendations to enhance the resilience of defencerelated CEI against hybrid threats.

Adopt	Conduct	Foster
a whole-of-society	periodic vulnerability	international
approach to resilience-	assessments and	collaboration and
building against hybrid	identify	information sharing
threats, considering	interdependencies to	to counter hybrid
existing dependencies	address gaps that	threats at operational
and interconnections in	hostile actors could	and strategic levels
society.	exploit.	effectively.

eda.europa.eu/docs/default-source/brochures/eda-jrc-study web-version.pdf

CF SEDSS: research focus and table-top exercise

Guidance on Advancing Sustainable Energy in Defence

5 Chapters:

- 1. Strategic Context;
- 2. Implications of Energy Legislative Landscape on Defence;
- 3. Roadmaps for Advancing Sustainable Energy in Defence;
- 4. Guidance for the Implementation of the Roadmaps;
- 5. Cross-Cutting Support for the Implementation of the Defence Energy Roadmaps.

Guidance on Advancing Sustainable Energy in Defence

This guide supports the European ministries of defence in adopting sustainable energy solutions and contributes to the EU efforts to reach climate neutrality. It offers detailed roadmaps and actionable recommendations for:

Identifying opportunities:

• Explore how the defence sector can benefit from integrating EU energy policies and legislation.

Strategic planning:

 Detailed plans derived from a thorough analysis of energy policy frameworks, including directives and regulations.

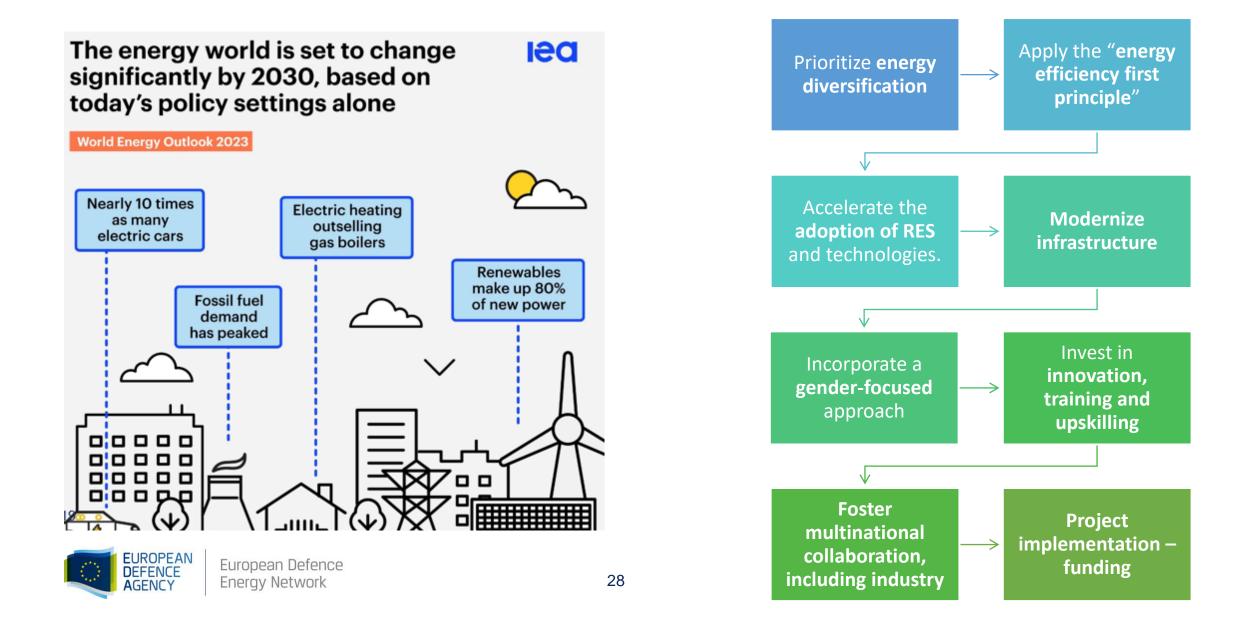
Boosting defence energy transition by:

- Improving energy efficiency and building performance
- Incorporating renewable energy sources
- Protecting defence-related critical energy infrastructure
- Adopting energy management policies and advancing
 upskilling
- Integrating innovative energy technologies and promoting strategic foresight
- Identifying applicable funding or financing instruments for defence-related energy topics

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 882171

Boosting the defence energy transition

3. Reflections



European Defence Energy Network

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 882171

Preparing defence for the post-2030 energy landscape

Learn more about us

Visit our webpage

Read our fact-sheets link

Watch our video-clips

EUROPEAN DEFENCE AGENCY

European Defence Energy Network

CONSULTATION FORUM SUSTAINABLE ENERGY

A European Commission initiative managed by the European Defence Agency to assist the European Union Ministries of Defence to move towards green, resilient, and efficient energy models.

Home Phase I Phase II Phase III Policy & Legislation Funding Media

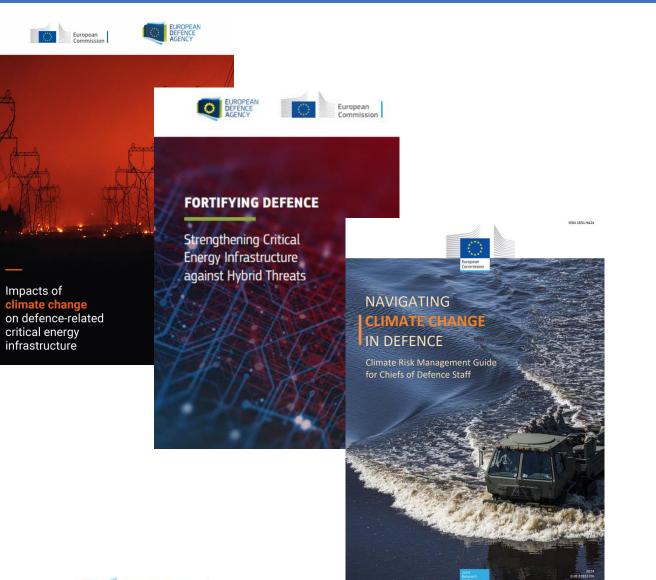
Latest news

25 APRIL 2024

24 NOVEMBER 2023

Greening Defence with Innovation: 2nd Energy Technology Solutions Conference & Exhibition

All news \rightarrow



22 NOVEMBER 2023

EDA green defence forum reaches highest level of participation

Publications

Upcoming publications

Impacts of

Learn more about us

Visit our webpage link

SYMBIOSIS: OFFSHORE RENEWABLE ENERGY FOR DEFENCE

A European Commission and European Defence Agency action to promote coexistence of offshore renewable energy projects and defence operations and systems.

SUSTAINABLE ENERGY For sustained defence

Thank you for your attention

Dr Constantinos HADJISAVVAS

EDA Project Officer Energy Project Manager of EU-funded programmes (CF SEDSS, H2020 and Symbiosis, Horizon Europe)

constantinos.hadjisavvas@eda.europa.eu

www.linkedin.com/in/dr-constantinos-hadjisavvas-66353380

European Defence Energy Network

This project has received funding from the suropean Union's Honzon Europe Coordination and Support Actions under the grant agreemes to 101077477

s project has received funding from the opean Union's Horizon 2020 research and ovation programme under grant agreemen 882171 **European Conference of Defence and the Environment**

ECDE 2024

JEROEN ROTTINK Chair NATO Environmental Protection Working Group

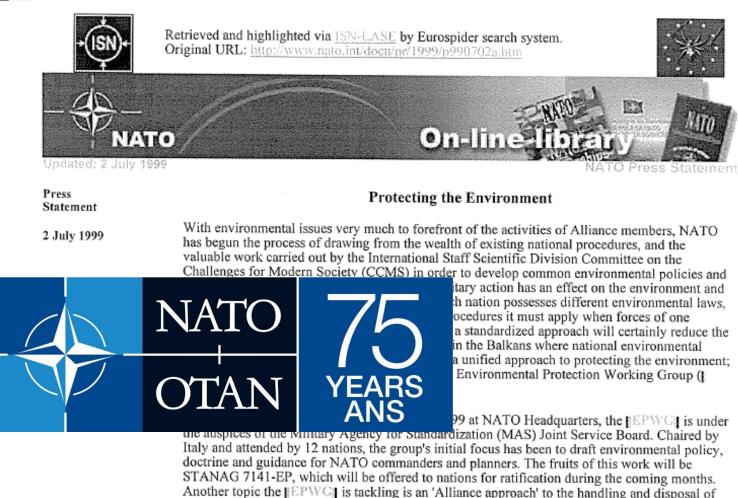
EUROPEAN CONFERENCE OF DEFENSE AND THE ENVIRONMENT

NATO Environmental Protection governance and relations to Energy, Climate Change and Security

NATO MCJSB Environmental Protection Working Group (EP WG)

Mr Jeroen Rottink NLD (Civ) Chair EP WG jbh.rottink@mindef.nl

Capt Natalia LAIDOGLOU, GRC-N Secretary EP WG Laidoglou.Natalia@nso.nato.int


- NATO EP Governance
 - Policy documents
 - Committees and Working Groups (WGs)
 - NATO $\leftarrow \rightarrow$ Nations
- Relations to ENSEC and CCAS
 - Products tools
 - Synergies
- How to achieve more?
 - NATO EP/ENSEC/CCAS related Courses
 - Future Outlook

NATO EP Governance - 1

Hazardous Waste Materials. Hazardous Waste Materials. Build the IN-WG expects to have widespread harson and dalogue. Environmental protection is topical and its scope is vast; the [EPWG] is taking its first steps in pooling the knowledge of

century.

members and harmonizing environmental procedures which the Alliance will use in the next

36

CCAS – ENSEC – EP relations

Increased climate change & security awareness

Adaptation to climate change (= extra MCJSB priority for EPWG) & related security challenges

NAPO CHINGLE CHOOSE & SECURITINA PRIOCHEST to climate change & security

EP awareness. education and outreach

EP standardization and Environmental Management Systems

O Environmental Protection (EP) The prevention or mitigation of adverse changes to the environment (including air, water, land, natural resources, flora, fauna, humans, and their interrelations) resulting from NATO activities (apart from NATO's greenhouse gas emissions).

Protection of critical energy infrastructure

Strategic awareness of energy developments with security implications

The prevention

or mitigation of adverse

changes to the environment

...resulting from [NATO's]

greenhouse gas emissions

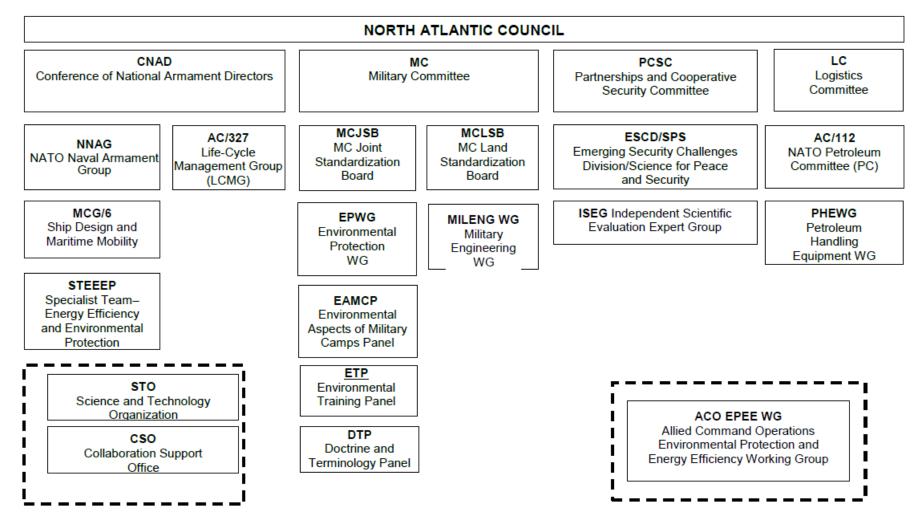
Ensure reliable energy supplies to the military

NATO EP Governance - 2

Policy & doctrine documents

- MC 469/2: NATO Principles and Policies for Environmental Protection (July 2023)
- MC 560/2: MC Policy for Military Engineering (Sept 2017)
- STANAG 7141 / AJEPP-4: Joint NATO Doctrine for Environmental Protection During NATO led Military Activities (March 2018 – under review)

MC = Military Committee STANAG = STANdardization AGreement (covers an AP = Allied Publication) AJEPP = Allied Joint Environmental Protection Publication



NATO EP Governance - 2 Committees and WGs

FUNCTIONAL DIAGRAM OF EP-RELATED NATO COMMITTEES

NATO EP Governance - 3 NATO ←→ nations

- EP in NATO Command Structure (NCS)
- Nations ratify / implement (*) at <u>national</u> <u>discretion</u>
- NCS <u>must</u> implement STANAGs
- Challenge

(*) 6 options: Ratify and [future] implement (with reservations) / Not ratify / Not participating

CCAS-ENSEC-EP

The prevention or mitigation of adverse changes to the environment ...resulting from [NATO's] greenhouse gas emissions

Tools – products

- 1. EP STANAGS
- 2. CNAD Standards (review) (climate)
- 3. ENSEC Reports
- 4. HQ Energy Transition by Design

EP Courses

- Advanced Distance Learning 033, Introduction to Environmental Awareness (under re-construction)
- M3-77 Environmental Management for Military Forces Course (2 weeks, NATO School)
- NATO Military Environmental Protection Practices and Procedures Course (NMEPPPC) (one week, MILENG CoE)

EP Library

at MILENGCOE website

ENSEC, MILENG and Operational Energy courses

Future Outlook

Involve more nations in EPWG and in work

Accelerate EP-work streams in NATO

Co-ordinate EP-work with ENSEC and CCAS (COE's)

- 1. Are there solutions that deal with both climate and security challenges?
- 2. And how will a changed climate affect military planning, activities and materiel in the future?

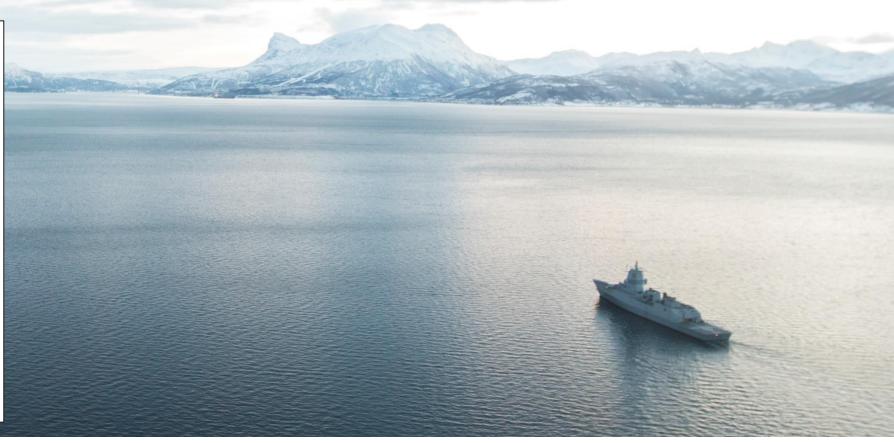
NATO UNCLASSIFIED

European Conference of Defence and the Environment

ECDE 2024

JULIE FOSSEM Department of Defence Policy and Long Term Planning, <u>Ministry of Defense, Norway</u>

The Norwegian Defence Pledge


Long-term Defence Plan 2025-2036

Prop. 87 S (2023–2024) Proposisjon til Stortinget (forslag til stortingsvedtak)

Forsvarsløftet – for Norges trygghet

Langtidsplan for forsvarssektoren 2025–2036

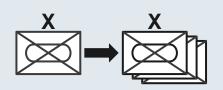
Norwegian Ministry of Defence

DRIVING FORCES OF NORWEGIAN DEFENCE POLICY

Main Priorities of the Defence Pledge

Situational Awareness

Enhancing situational awareness **in the High North**


Fleet plan 2024

Strengthening and renewing the Navy with new **frigates**, new **submarines** and **standardized vessels**.

Air Defence

Increased volume and performance of **NASAMS**systems and acquiring Long-range Air Defence

Land Forces

Expansion from one to three combat brigades in the Army and a more robust Home Guard

Addressing climate changes in the defence pledge

Photo: Elias Engevik / Forsvaret

Photo: Torgeir Haugaard/ Forsvaret

Photo: Marius Villanger / Forsvaret

The Norwegian Defence Pledge

Long-term Defence Plan 2025-2036

Norwegian Ministry of Defence

European Conference of Defence and the Environment

ECDE 2024

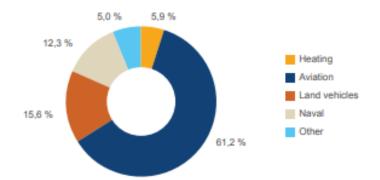
SARA KAJANDER Head of estate and environment, MoD Finland

A Comprehensive Approach to Climate and Security

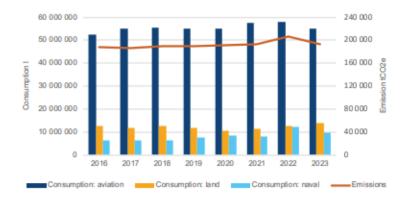
The 6th European Conference of Defence and the Environment

June 12th and 13th, 2024 Oslo, Norway

Sara Kajander Director, Real Estate and Environment Unit


24.6.2024

GHG Emissions of the Finnish Defence


600 000 120 000 500 000 100 000 400 000 80 0 08 ž 300 000 60 0 00 200 000 40 000 100 000 20 0 00 0 0 2016 2017 2018 2019 2020 2021 2022 2023 Heating MWh Electricity MWh Emissions tCO2

REAL ESTATE ENERGY CONSUMPTION AND EMISSIONS

GHG EMISSION DISTRIBUTION (2023)

FUEL CONSUMPTION AND EMISSIONS

<u>Goals</u>

- Prepare for energy transition without compromising the defence capability
- To cut the emissions of land vehicles and naval vessels by half from 2020 to 2030
- To study possibilities and set emission targets for military aviation in 2025

<u>Means</u>

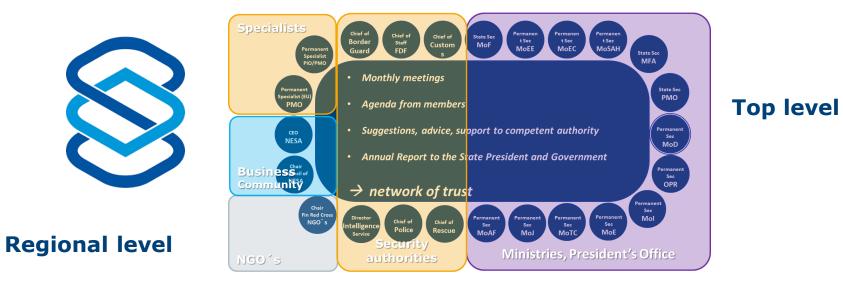
- Increased use of renewable fuels
- · Use of electric vehicles in military passenger traffic
- Increased R&D and infrastructure development

Puolustusministeriö Försvarsministeriet Ministry of Defence

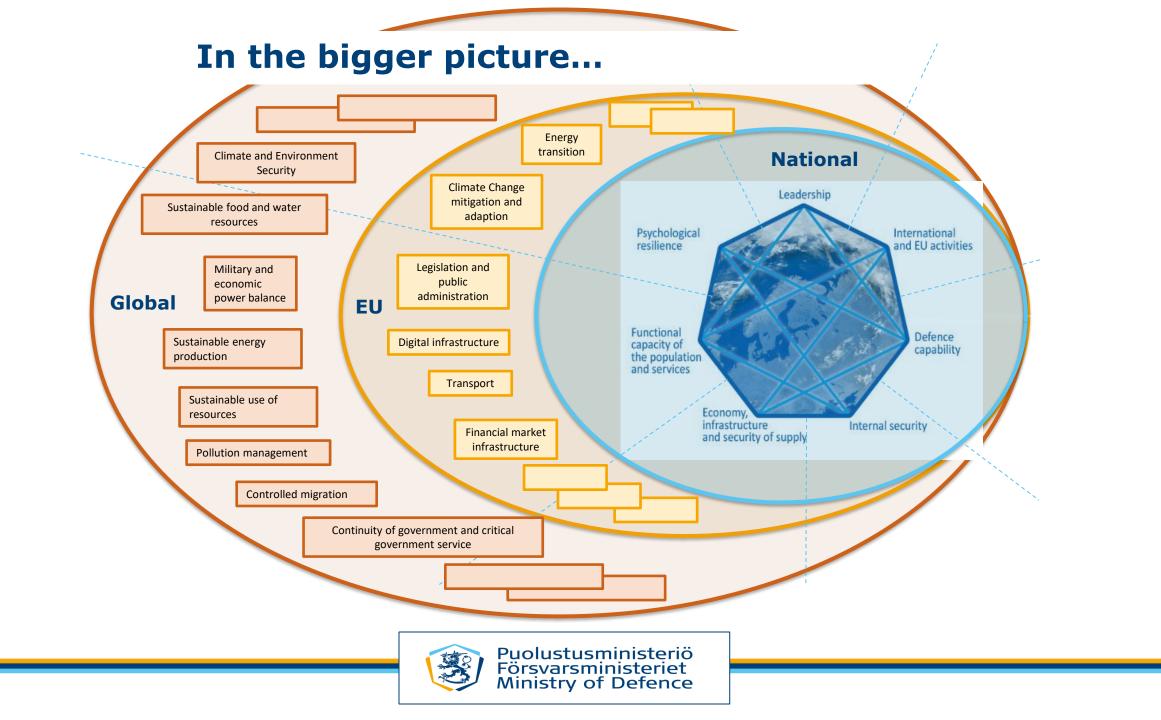
24.6.2024

The concept of Comprehensive Security

A whole-of-society approach is necessary to combine security interests and climate change management


THE FUNCTIONS VITAL FOR SOCIETY

"Coinciding, not conflicting interests" = A network of trust for prioritizing and


prioritizing and safeguarding the interests of the whole society

The Security Committee and Comprehensive Security Model

European Conference of Defence and the Environment

ECDE 2024

TOBIAS ETZOLD The Norwegian Institute of International Affairs

Climate Change in the Arctic: Security Implications and Consequences for Military Operations

ECDE Conference, Oslo, 12-13 June 2024

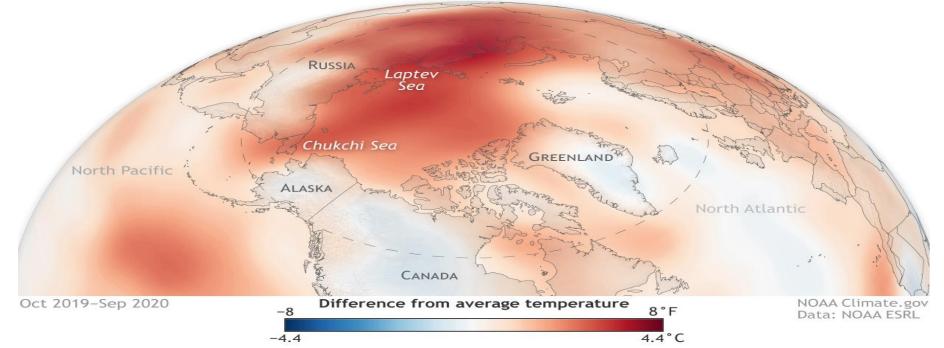
Dr. Tobias Etzold, Senior Research Fellow

Norwegian Institute of International Affairs (NUPI)

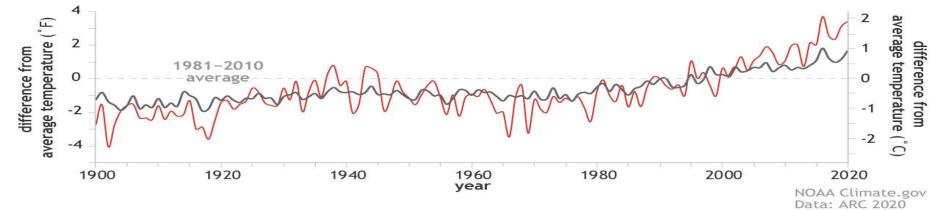
- Project within the 2023-24 project cycle of the **Multinational Capabilities Development Campaign (MCDC)**: US Joint Staff J7-led effort, in partnership with a community of 23 countries/int. organizations, to create non-material capabilities and solutions to support multinational force operations (MNFs) and exercises by solving or mitigating common military problems.
- •Norway (MoD/NUPI) has project lead.
- •10 contributing nations: AUT, CAN, DEU, FIN, FRA, GBR, POL, ROU, SWE, USA
- •7 observers: AUS, BRA, ESP, NLD, ROK, NATO-ACT, EU-MS

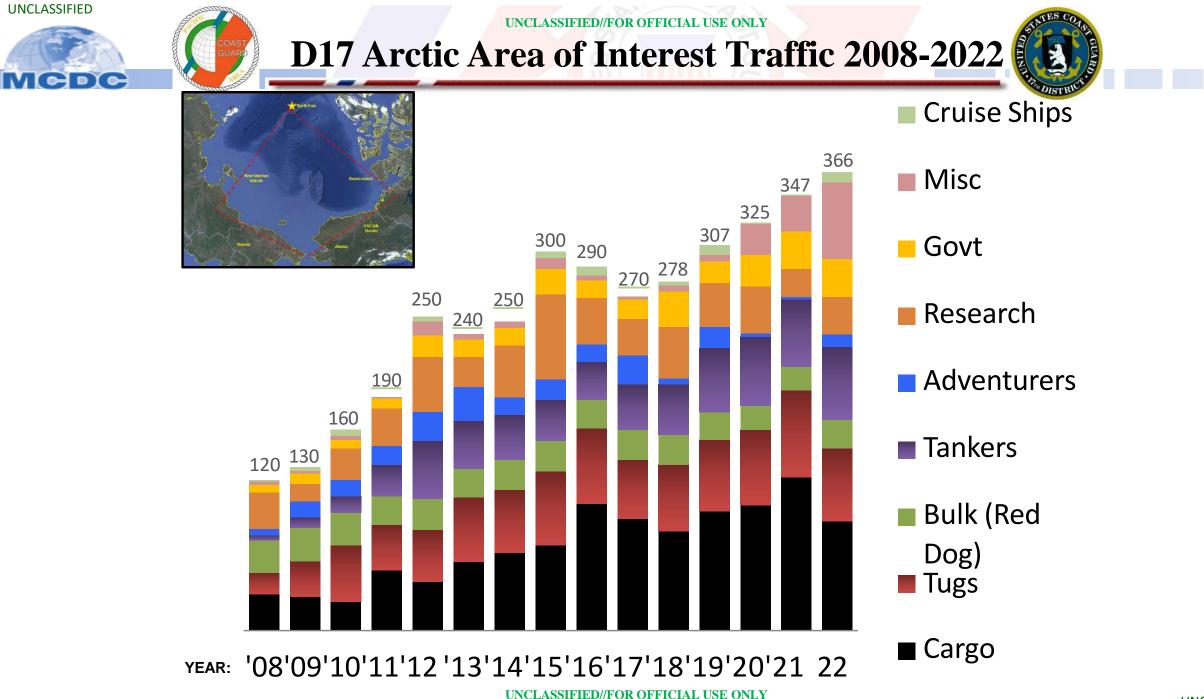
CLIMARCSEC: Background

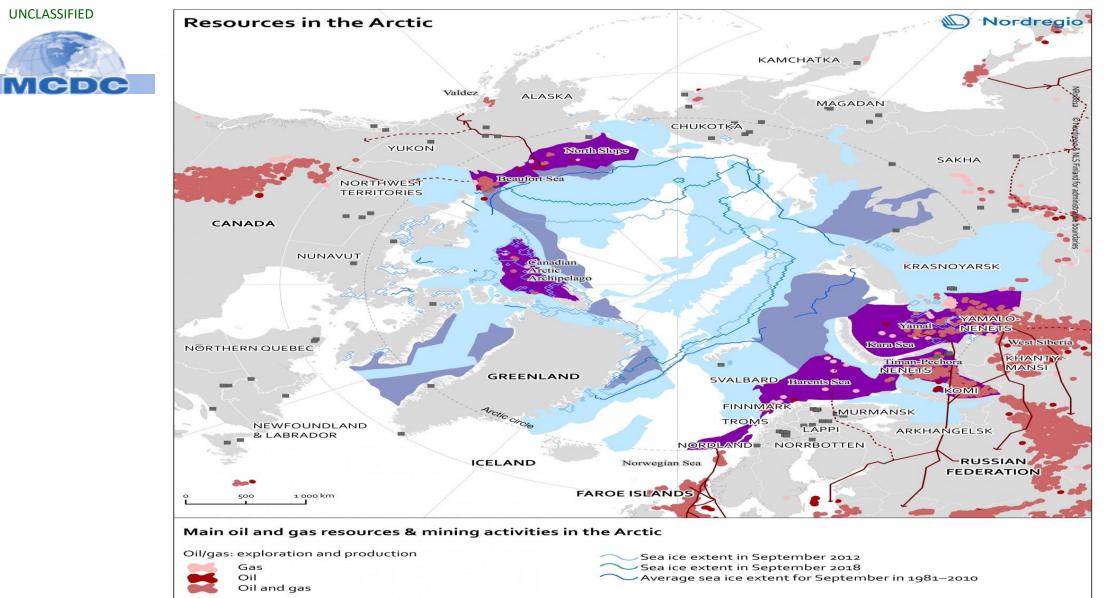
Figure 1. Arctic topographic map [1]


- Climate change is happening at high speed in the Arctic regions, three-four times faster than the global average, resulting in both new risks and new opportunities.
- Climate change opens up the Arctic and gives Arctic and non-Arctic actors easier access, facilitating navigation, resource extraction, fisheries and ecotourism including the risk of hybrid threats.
- The Arctic is presumably emerging as an arena of global rivalry over (political, military and economic) power among: Russia, USA and China.
- Rising temperatures are resulting in alarming reductions in sea ice cover and permafrost thawing as well as extreme weather conditions which directly affect among others also military operations.
- Lack of effective cooperation, security governance structures and coordination.

UNCLASSIFIED




CLIMARCSEC Background: Arctic warming


2020 WAS ARCTIC'S SECOND-WARMEST YEAR ON RECORD

ARCTIC WARMING MORE THAN DOUBLE THE GLOBAL AVERAGE SINCE 2000

Oil/gas: prospective areas and reserves

<50% Probability that at least one accumulation of more than 50 million barrels of oil or 50-99% oil-equivalent gas exists after USGS

100% (including areas north of Arctic Circle)

Main existing oil/gas pipeline (indicative direction)

Main proposed oil/gas pipeline (indicative direction)

Main mining site

UNCLASSIFIED

Regions included:

US - Alaska; CA - Yukon, Northwest Territories, Nunavut, Northern Quebec, Newfoundland & Labrador; GL; IS; FO; NO - Nordland, Troms, Finnmark, Svalbard; SE - Norrbotten; FI - Lappi; RU - Murmansk, Arkhangelsk, Komi, Nenets, Khanty-Mansi, Yamalo-Nenets, Krasnoyarsk, Sakha, Kamchatka, Magadan, Chukotka.

Data source: Nordregio, NSIDC, PRIO, United States Geological Survey USGS and several homepages for oil, gas and mining companies.

- So far, climate change itself has not directly caused any conflicts in the Arctic and is not, and most likely will not be also in the near future, the main driver for emerging geopolitical tensions in the Arctic and beyond.
- But climate change makes military operations even more difficult and costly which however might become more necessary than before in order to meet tensions and potential conflicts from the outside spilling into the Arctic (Climate change as "threat multiplier").
- Also, an increase of SAR (Search&Rescue) Operations with military involvement due to more shipping is likely.

Climate change is opening the Arctic up to competition at a pace that challenges existing governance structures and national military capabilities and reveals capability gaps. The need for military MNF operations in the Arctic is increasing, but at the same time they are becoming more difficult. This increases the need for stronger situational awareness, operational capability, governance/coordination and policy changes.

- More awareness and a better understanding of the sometimes somewhat vague problem of climate change's impact on security and military operations and related challenges.
- Adaptation to new requirements and environments needed.
- More cooperation and coordination:
- More pronounced role for NATO in the Arctic → "NATO and Allies will continue to undertake necessary, calibrated, and coordinated activities, including by exercising relevant plans" (2023 NATO Vilnius Summit Communique).

- Increasing awareness of climate change and climate security in NATO: NATO's Centre of Excellence for Climate Change and Security (CCASCOE) → key unit for expanding cooperative efforts to understand the climate threat, to learn how NATO can promote mitigation and adaptation efforts and how it will affect NATO's training and missions and to understand the strategic environment in which they operate.
- Thorough research through various research institutes in Europe, the USA and Canada and close cooperation between them.

European Conference of Defence and the Environment

ECDE 2024

BRYNJAR ARNFINNSSON Norwegian Defence Research Establishment

FF Norwegian Defence Research Establishment

The Zero Emission Defence – a Review of Climate-Friendly Technology for the Norwegian Armed Forces

Brynjar Arnfinnsson Senior Scientist, FFI

Agenda

- 1. Energy sources and carriers
- 2. Comparison of technologies
- 3. Potential applications
- 4. Can green technologies reduce logistics?
- 5. The way to net zero

Energy sources and carriers

Energy sources

Renewable energy

Hydro Wind

Solar

Nuclear energy

Uranium

Thorium

Energy carriers

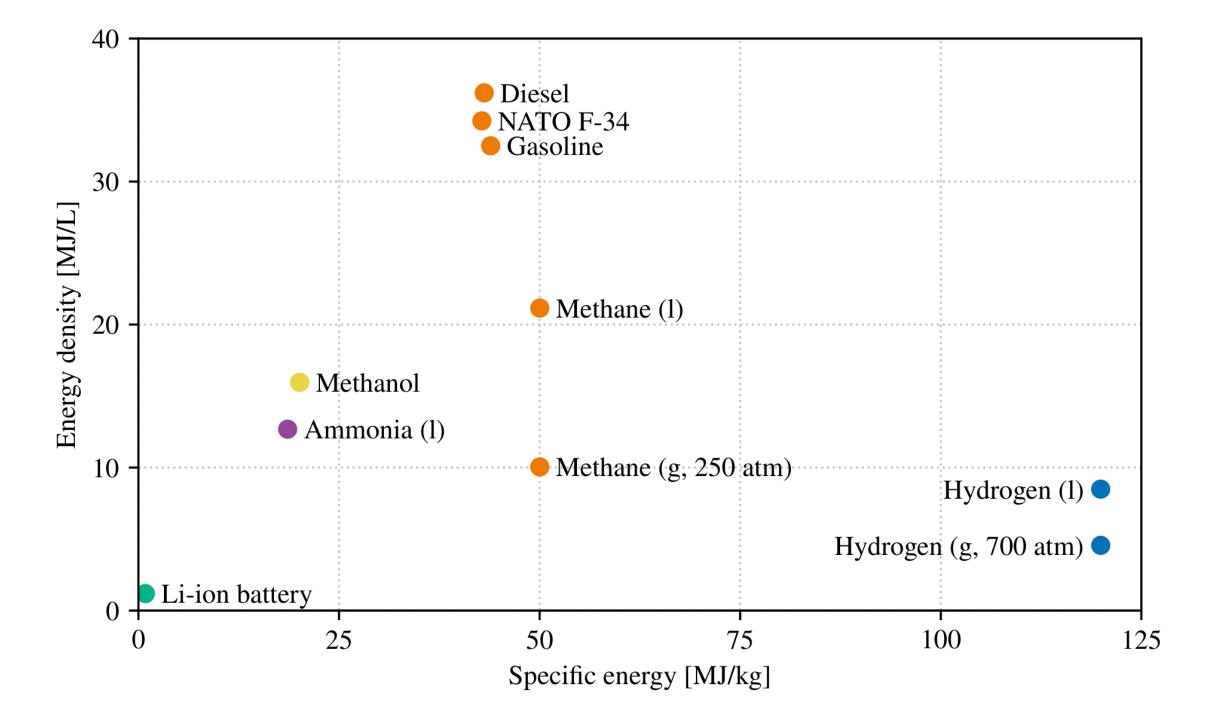
Carbon-free

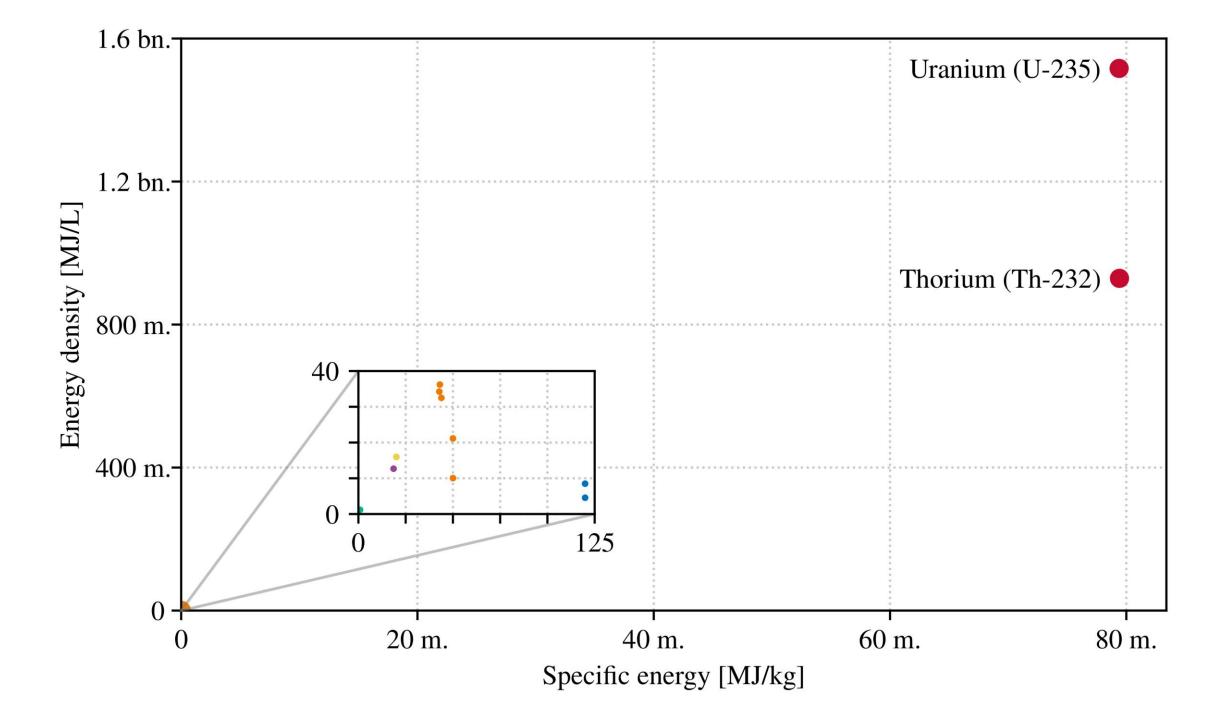
Electricity

Hydrogen

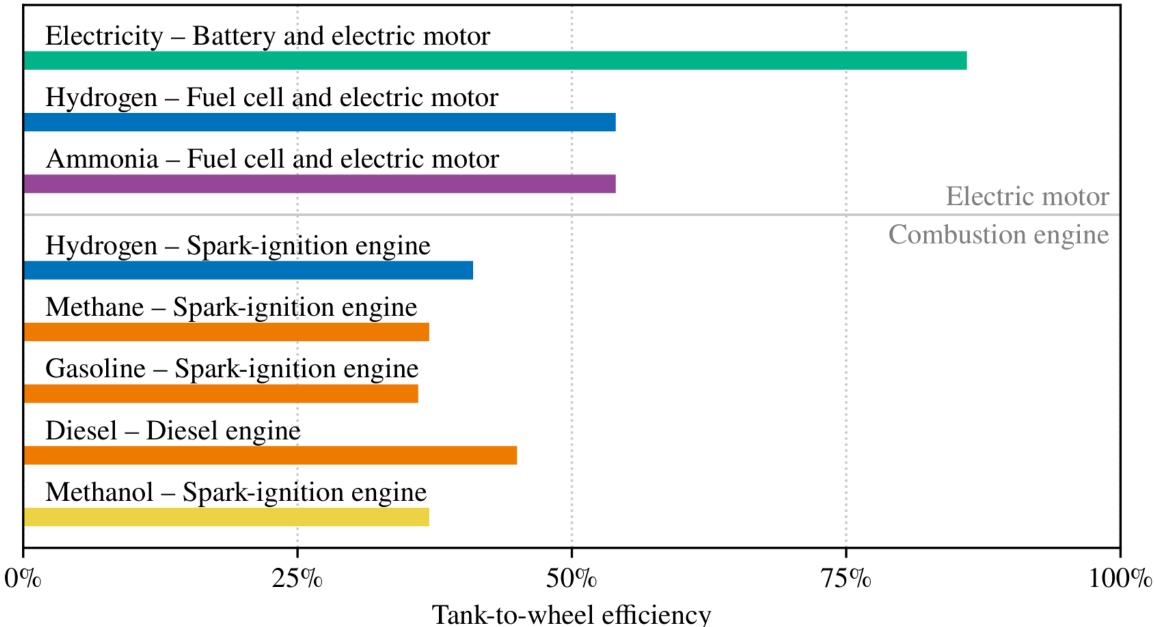
Ammonia

Nuclear energy




Carbon-based – Hydrocarbons

Alcohols


Images: Norwegian Armed Forces

Comparison of technologies

Fuel and drivetrain

	Energy content	Energy efficiency	Greenhouse gas emissions	Costs
Electricity				
Li-ion batteries				
Hydrogen				
E-hydrogen				
Ammonia				
E-ammonia				
Nuclear energy				
U-235				
Hydrocarbons				
Biomethane				
E-methane				
Biodiesel				
E-diesel				
Alcohols				
Biomethanol				
E-methanol				

Color indicators

- Better than fossil diesel
- Equal to fossil diesel
- Slightly worse than fossil diesel
- Much worse than fossil diesel

	Energy content	Energy efficiency	Greenhouse gas emissions	Costs
Electricity				
Li-ion batteries				o o i
Hydrogen				
E-hydrogen				
Ammonia				
E-ammonia				
Nuclear energy				
U-235				
Hydrocarbons				
Biomethane				
E-methane				
Biodiesel				
E-diesel				
Alcohols				
Biomethanol				
E-methanol				

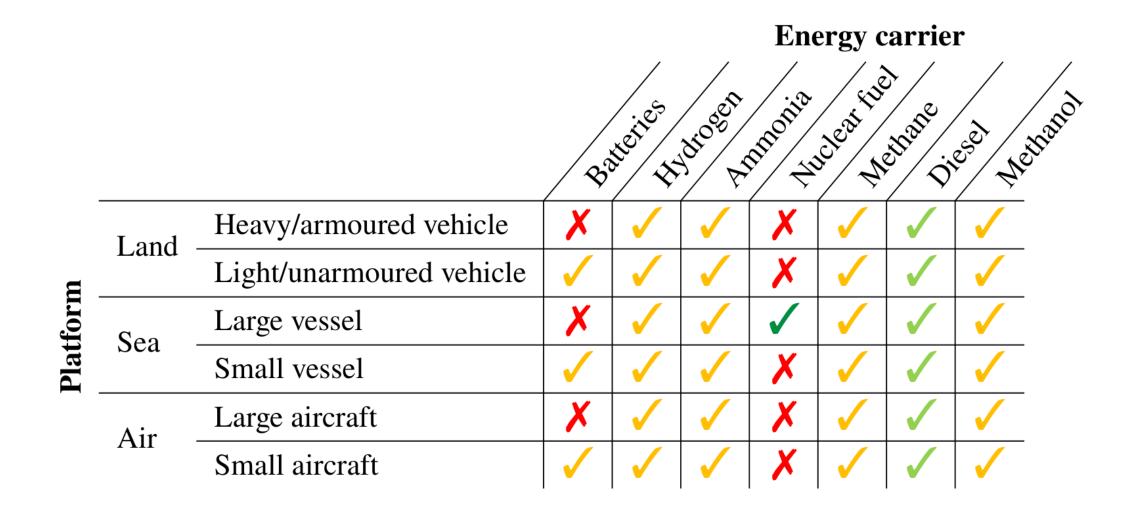
Color indicators

- Better than fossil diesel
- Equal to fossil diesel
- Slightly worse than fossil diesel
- Much worse than fossil diesel

	Energy content	Energy efficiency	Greenhouse gas emissions	Costs
Electricity				
Li-ion batteries				●o ─i
Hydrogen				
E-hydrogen	●e ●s	●f <mark>●</mark> c		₽º ●i
Ammonia				
E-ammonia	•	●f ?c		o o i
Nuclear energy				
U-235		N/A		o 💡 i
Hydrocarbons				
Biomethane	e s	•		₽º ●i
E-methane	e s	•		o oi
Biodiesel			•	🥐 o 🛑 i
E-diesel				o oi
Alcohols				
Biomethanol	•	?		o oi
E-methanol		?		o oi

Color indicators

- Better than fossil diesel
- Equal to fossil diesel
- Slightly worse than fossil diesel
- Much worse than fossil diesel


Comments

- Energy density
- f Fuel cell
- Operating

- •^s Specific energy
- •^c Combustion
- •ⁱ Investment
- High uncertainty assessment

Potential applications

			Energy carrier						
	Bateries Andros Antropica Alerane Alerane				tranol				
	Land	Heavy/armoured vehicle	X	\checkmark	\checkmark	X		\checkmark	
n		Light/unarmoured vehicle	\checkmark	\checkmark	>	×	<		
forn	See	Large vessel	X	\checkmark	\checkmark			\checkmark	
Platform	Sea	Small vessel	\checkmark		\checkmark	X		\checkmark	
	Air	Large aircraft	X	\checkmark	\checkmark	X		\checkmark	
		Small aircraft	\checkmark	\checkmark	\checkmark	X		\checkmark	

What about energy for operating bases and military infrastructure?

Can zero emission technology reduce logistics?

«The defense that first manages to crack the code – on how to become less dependent on fossil logistics – they have a great advantage.»

> Eirik Kristoffersen Norwegian Chief of Defence 25th Nov. 2022

Photo: FFI

Photo: Johan Ludvig Holst / Forsvaret

a the second and a second

-25

tind

The way to net zero

The way towards net zero for the Armed Forces

- Biofuels and e-fuels
- Dual-fuel
- Nuclear power
- Renewable energy
- Batteries

"The Armed Forces cannot be the only remaining fossil sector in a society which in the future will be fossil-free. We must reconcile the need to have a strong defense with a green defense."

> Jens Stoltenberg Secretary General of NATO 26th June 2023

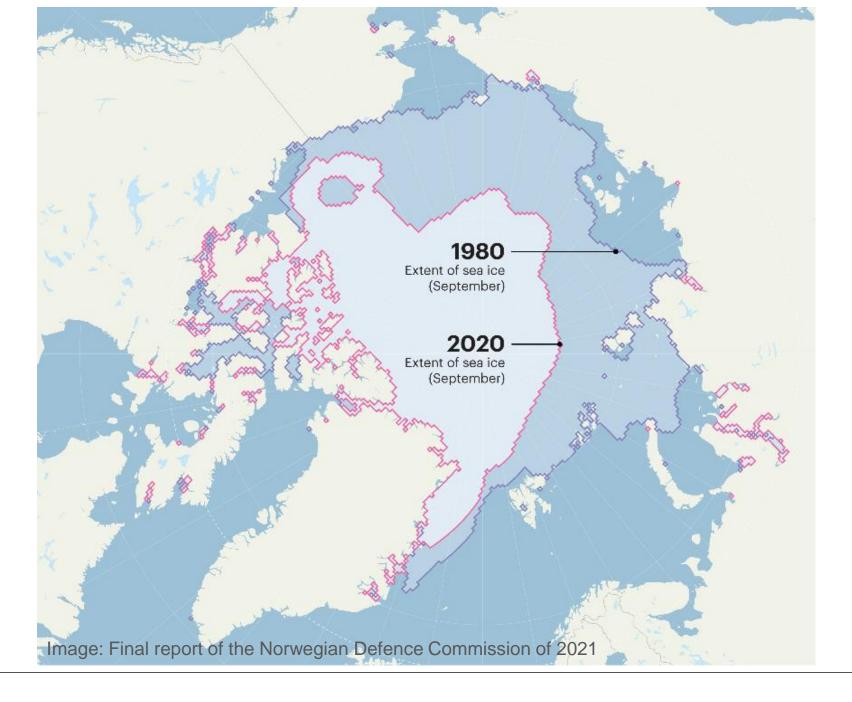
Photo: Stian Lysberg Solum / NTB

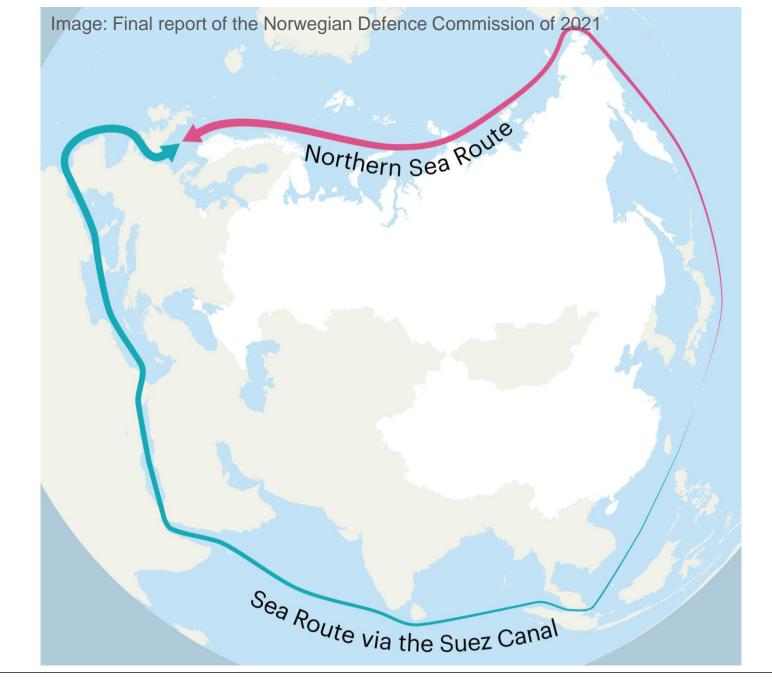
Questions?

Contact: Brynjar.Arnfinnsson@ffi.no **European Conference of Defence and the Environment**

ECDE 2024

MARIUS PEDERSEN Norwegian Defence Research Establishment




Research Establishment

National and International Security in the Arctic

Norwegian Perspectives

Marius N. Pedersen

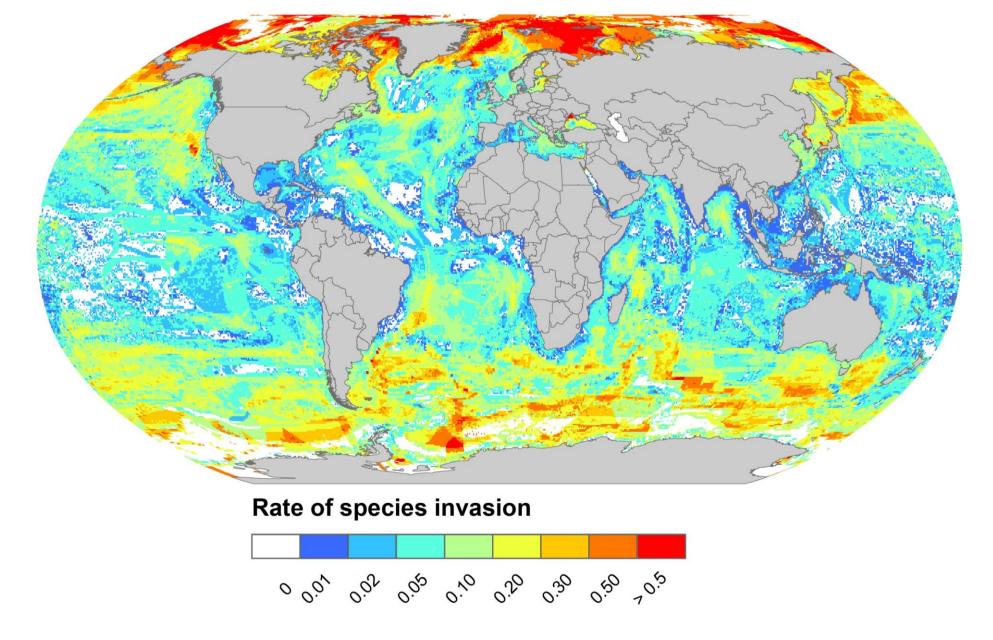


Image: William Chung et al., ICES Journal of Marine Sciences 72, 2016

Arctic Security Landscape

- Great deal of alarmism
- «Race for the Arctic»
 - Resources
 - Trade routes
 - Ice breakers
- Consequences of militarisation and securitisation
- Less cooperation and more uncertainty
 - Militarisation
 - Securitisation

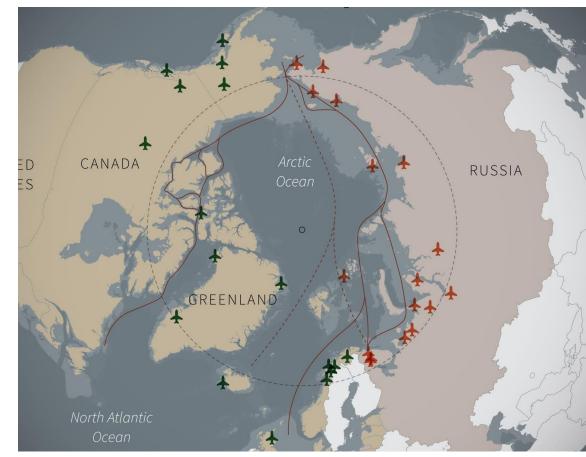


Image: Vijdan Mohammad Kawoosa / High North News

Impacts on the Maritime Domain

- Greater maritime access
- More open sea
 - Often poorly charted
 - Even uncharted
- Increased human activity
 - Military and commercial
 - Cruise traffic is a particular challenge
- New actors with limited Arctic experience
- Uncertainty about treaties

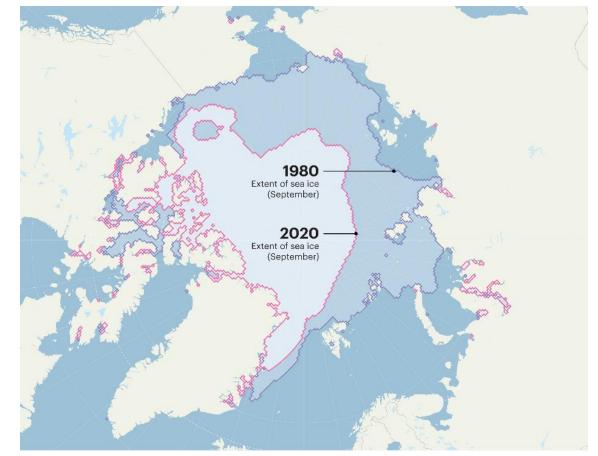


Image: Final report of the Norwegian Defence Commission of 2021

Impacts on the Maritime Domain

- The contentious Svalbard Treaty
- United Nations Convention on the Law of the Sea

 Article 234:

"Coastal States have the **right to adopt and enforce non-discriminatory laws and regulations** for the prevention, reduction and control of marine pollution from vessels in ice-covered areas within the limits of the exclusive economic zone, where **particularly severe climatic conditions and the presence of ice covering such areas for most of the year** create obstructions or exceptional hazards to navigation, and pollution of the marine environment could cause major harm to or irreversible disturbance of the ecological balance. Such laws and regulations shall have due regard to navigation and the protection and preservation of the marine environment based on the best available scientific evidence."

Image: Archive of the Governor of Svalbard

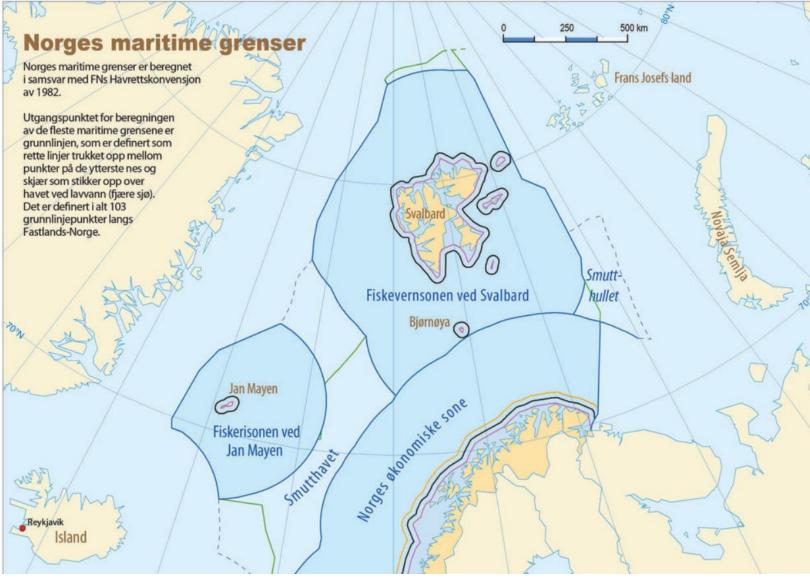
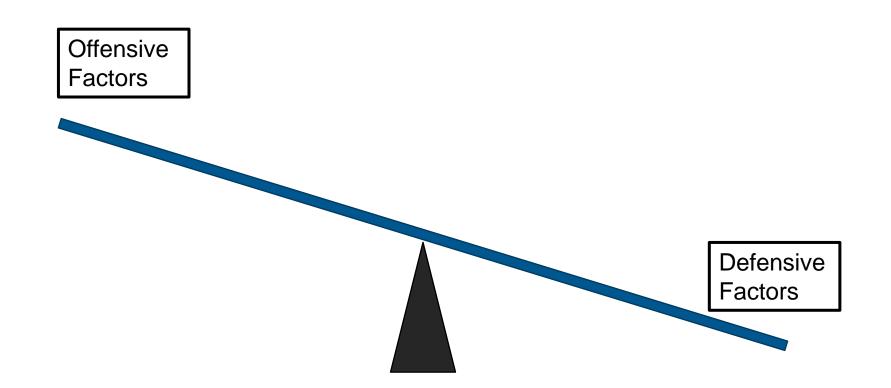


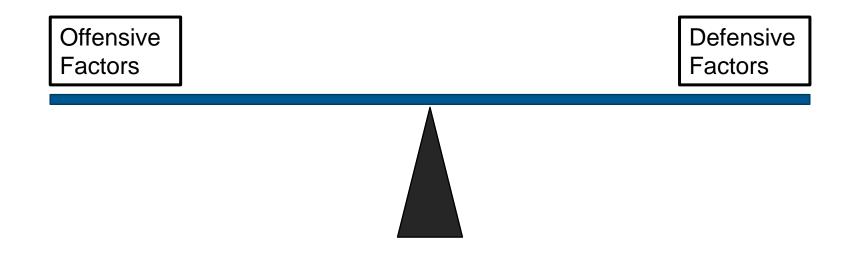
Image: The Norwegian Mapping Authority

Impacts on the Land Domain

"Weaponisation of migration seeks to use the destabilising potential in a high number of migrants in a short time period to provoke desired political change in a target state"

- Several recent examples
 - Russia against Finland and Norway in 2015
 - Belarus against Poland and Latvia during the winter of 2021/22
 - Russia against Finland and Norway 2023
- Climate refugees will offer Russia new opportunities to pressure hostile states


Image: Kancelaria Premiera (CC BY-NC-ND 2.0)


Security Consequences

- Increases risk of *security dilemmas*
- Tilting the offence-defence balance
- The Arctic has been a clearly defence-oriented region
- Climate change may tilt the scales towards balance

The Offence-Defence Balance

	Offensive advantage	Defensive advantage
Offensive posture not distinguishable from defensive posture	(1) Doubly dangerous	(2) Security dilemma, but security requirements may be compatible
Offensive posture distinguishable from defensive posture	(3) No security dilemma, but aggression possible. Status quo states may follow different strategies than aggressors. Warning given.	(4) Doubly safe

European Conference of Defence and the Environment

ECDE 2024

SONJA BERLIJN KTH Royal Institute of Technology

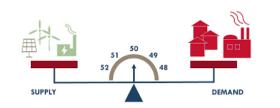
WHEN TRUST MATTERS

The future electricity system: A problem solver or a problem creator?

Prof.dr.techn.ir. Sonja Monica Berlijn MBA Tuesday 12 June 2024 prof.Sonja.Berlijn sonja-monica-berlijn-144ab1a/ @sonja_berlijn prof. Sonja Berlijn

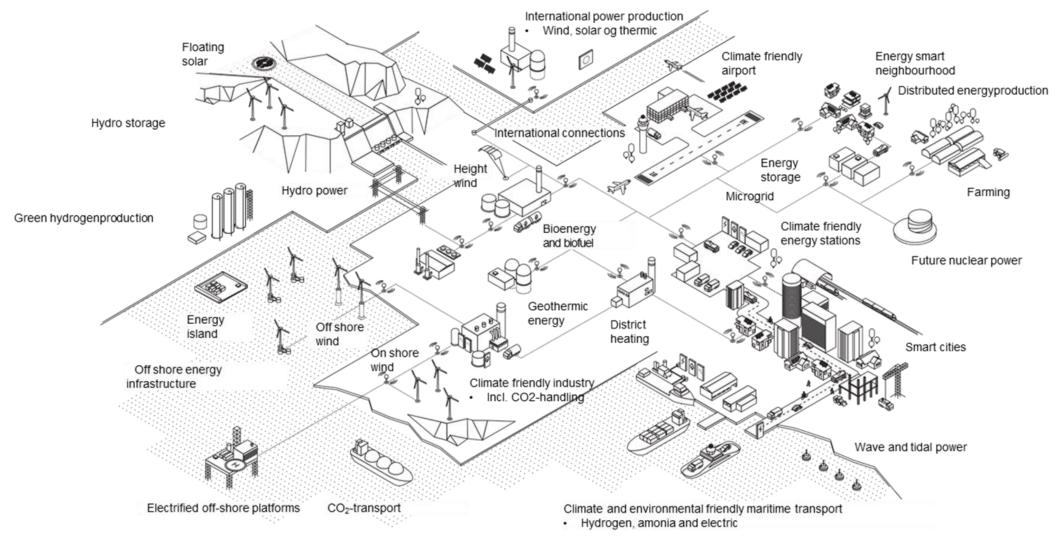
Electricity system is rapidly changing

- Energy transition is going faster than expected
 - Electricity demand is increasing significant
 - New production is needed
 - Both new types of demand and production arise
 - Electricity becomes more and more relevant for society
- The electricity system needs to facilitate these changes
- The future electricity system solves climate challenges but introduces some new challenges

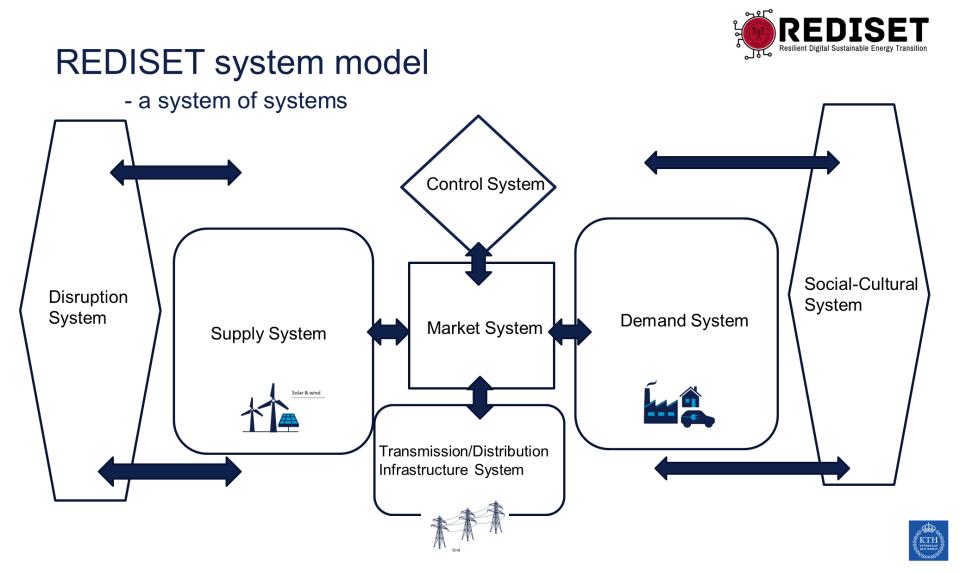


A simple Electricity System

Every electrical power system has three major components


- generation: source of power, ideally with a specified voltage and frequency
- transmission system [transformers, lines, etc.]: transmits power; ideally as a perfect conductor
- load: consumes power; ideally with a constant resistive value

A glimpse of the future electricity system


Electricity will be the main energy source

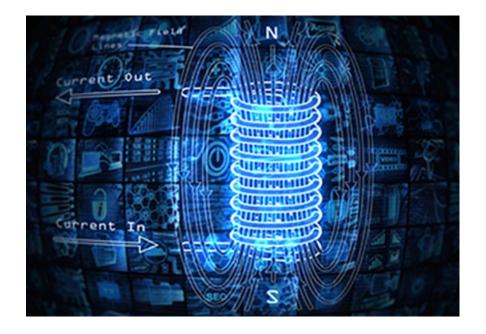
- The future electricity system has a large impact on the functioning of society and total defence
 - Transport, communication, information, food, water, payment, is there anything left that does function without electricity?
- The electricity system is under pressure and its vulnerability is increasing
 - More digital solutions are needed to solve the challenges in the electricity system
 - The build-in redundancy might be decreasing
 - It is too complex for even insiders to understand

How can we find weaknesses in a complex electricity system?

DNV

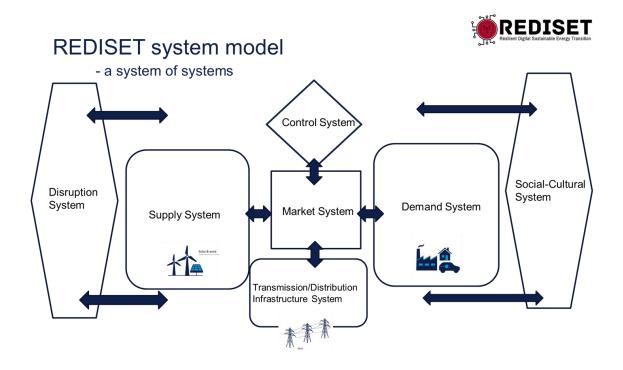
Creative ways to attack the future electricity system

- Market system
- •Weather data
- False sensor data
- Disinformation via social media



- Attack a small player in the electricity system
- Certain components
- •Off-shore grid connection

Electricity system has become a complex cyber-physical system and defending it becomes more complex and expensive


- Physical attacks
 - Right now there is a redundancy in the grid, this redundancy is shrinking
 - Longer lead times for new equipment (3-7 years)
- Cyber attacks
 - Indirect via administrative systems
 - Disrupting data
- Social attacks
 - Consumers, e.g. EV-users
 - Critical persons on critical positions

What are the highest risks and how to mitigate them?

- What are the highest risks?
 - Preliminary research has shown that there are some unexpected items
 - We can learn from on-going crisis
- How to mitigate the risks?
 - Can micro-grids be a solution?
 - Can decentralisation help?
 - Shall control in crisis be simplified?
- What are acceptable costs?
 - Redundant and resilient grid is maybe too expensive?

Problem solver or problem creator?

- The electricity system is the back-bone of the future energy system
- It is expected that the grid will more than double in length and the need for electricity will increase with a factor of 2-7
- The pace of the increase in need is higher than the increase of new grid capacity congestion
- The congestion can be solved with digitalisation
- The new electricity system solves our dependence on gas and oil and reduces CO₂ emission
- 'There is no transition without transmission'

Problem solver or problem creator?

- More and more is depending on electricity
- The electricity system will be connected to other systems (sector coupling)
- The electricity system is very complex and even for in-siders difficult to understand
- A lot of parties will be active contributors to the electricity system
- The future system will be highly digitalized
- There might be less margins available in the transition period
- The digitalization of the electricity system leads to new vulnerabilities
- Cyber physical security and cyber physical resilience are new areas of attention and research

WHEN TRUST MATTERS

Thank you for your attention

Sonja.monica.berlijn@dnv.com

www.dnv.com

DNV

123 DNV ©

Defence Zero

Modelling approach for Defence sector emissions and future evolution of Defence emissions

Roland Berger

Content

Background of Roland Berger Defence Zero study

Our modelling approach and results for 2019 Defence emissions

Preliminary conclusions

A. Background of Roland Berger Defence Zero study

Roland Berger started the 'Defence Zero' study to understand the Defence industry sustainability challenge; we focus on emissions as the starting point

What is the source & magnitude of the challenge of emissions in Defence?

- 3 How to manage trade-offs (cost, timing, operational effectiveness, ...)?
- 4 What is needed to fund the development and implementation of solutions?
- 5 What should MoDs and industry focus on? What roles should they play? How can we be more effective and move faster by working together?

B. Our modelling approach and results for 2019 Defence emissions

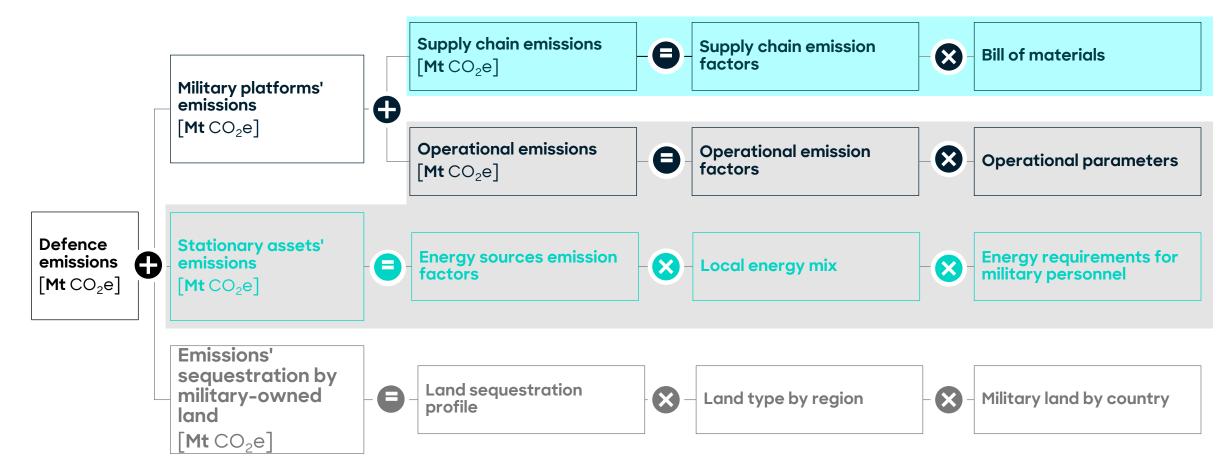
We use a bottom-up approach to estimate the contribution from platforms, considering emissions factors in the supply chain, and their utilisation

Main sources of emissions modelled in Defence Zero

Mobile platforms

- Supply chain
 - Annual platform deliveries
 - Emissions factors of component parts (cradle-to-gate)

- Operations
 - # of in-service platforms
 - Active % of in-service platforms
 - Utilisation of active platforms
 - Hourly emissions of platforms


Stationary assets

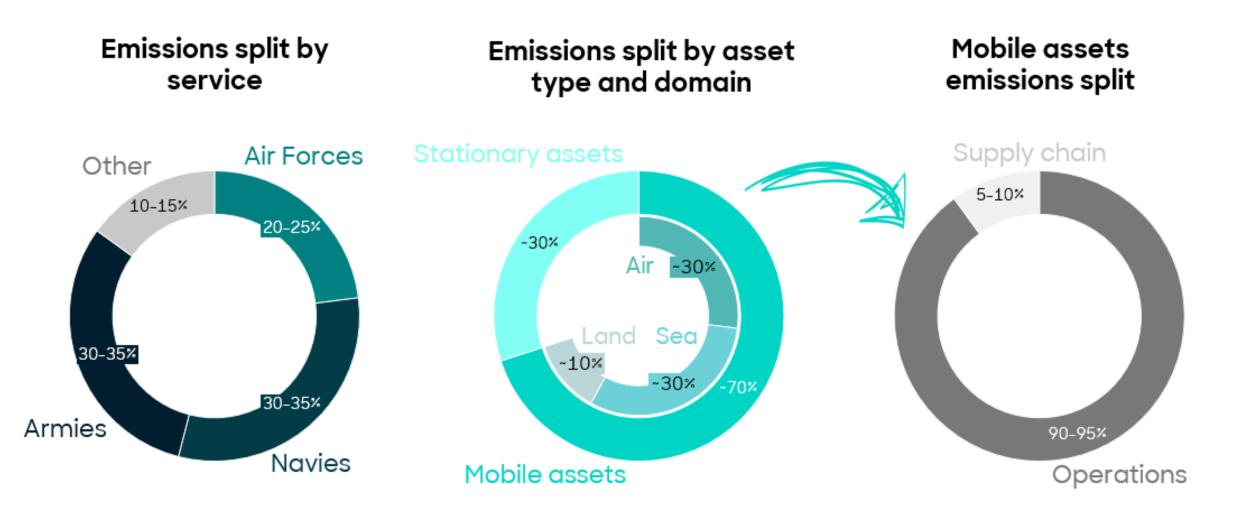
- Energy requirements for military personnel by country
- Energy emissions factors
- Sequestration/carbon sinking: land ownership, sequestration profiles, sequestration rates

We may underestimate contributions from some areas, e.g. we do not (yet) explicitly factor in emissions from production and use of missiles and ammunition

Our model aggregates emissions from military platforms, from stationary military assets, and emissions sequestered by the land owned by the Forces

Defence Zero model structure

Armed Forces Scope 1+2


Armed Forces Scope 3 upstream / OEMs Scope 1+2 + Scope 3 upstream

Source: Roland Berger

Our model estimates the contribution of Defence to be ~1% of global emissions

	Emissions [2019, Gt CO ₂ e]			% global emissions
Road transport			5.5	~12%
Energy production for residential buildings			5.0	~11%
Energy production for commercial buildings		3.0		~7%
Civil aviation	0.9			~2%
Maritime transport	0.8			~2%
Defence - Roland Berger study	0.5			~1%
Defence - Nature study	0.5 1.8			1-5%
Defence - SGR study	2	2.8		~6%

Two-thirds of (2019) Defence emissions were from mobile assets, a small share of which was from production, with the majority arising from their operation

Defence contributes ~1% of manmade emissions, but will be heavily scrutinised. We must understand baselines, and balance sustainability & traditional priorities

Actions for Defence industry stakeholders

- **Measure:** Understand individual emissions baselines (Scopes 1, 2 and 3) and main drivers, including conforming with reporting requirements (TCFD, ISSB, EFRAG, SBTi, CDP,)
 - Scope 1 & 2 are relatively straightforward
 - Scope 3, particularly 3-1 (Purchased Goods & Services) & 3-11 (Use of Sold Products), is harder

Identify how sustainability (decarbonisation, supply chain transparency/reliability/security) & operational effectiveness can strengthen each other

Understand the broader impact of ESG, given scrutiny from investors & other stakeholders

* Prioritise actions that offer suppliers and end users the "best" return over the next 5-10 years and beyond

Roland Berger

European Conference of Defence and the Environment

ECDE 2024

TOBIAS ETZOLD The Norwegian Institute of International Affairs

Climate Change in the Arctic: Security Implications and Consequences for Military Operations

ECDE Conference, Oslo, 12-13 June 2024

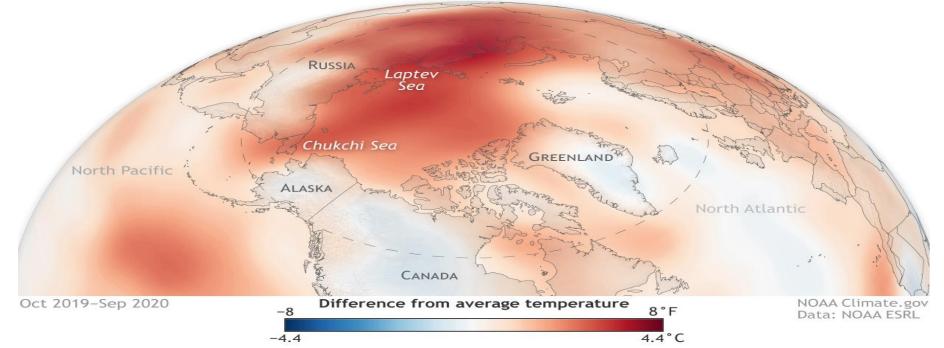
Dr. Tobias Etzold, Senior Research Fellow

Norwegian Institute of International Affairs (NUPI)

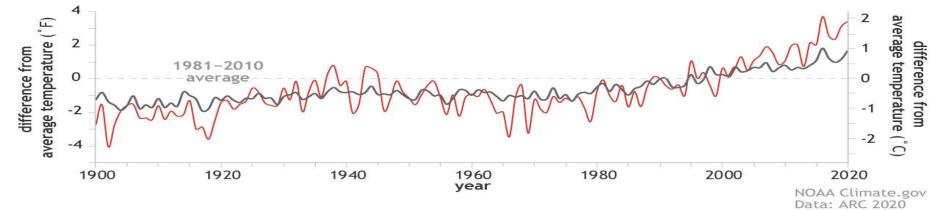
- Project within the 2023-24 project cycle of the **Multinational Capabilities Development Campaign (MCDC)**: US Joint Staff J7-led effort, in partnership with a community of 23 countries/int. organizations, to create non-material capabilities and solutions to support multinational force operations (MNFs) and exercises by solving or mitigating common military problems.
- •Norway (MoD/NUPI) has project lead.
- •10 contributing nations: AUT, CAN, DEU, FIN, FRA, GBR, POL, ROU, SWE, USA
- •7 observers: AUS, BRA, ESP, NLD, ROK, NATO-ACT, EU-MS

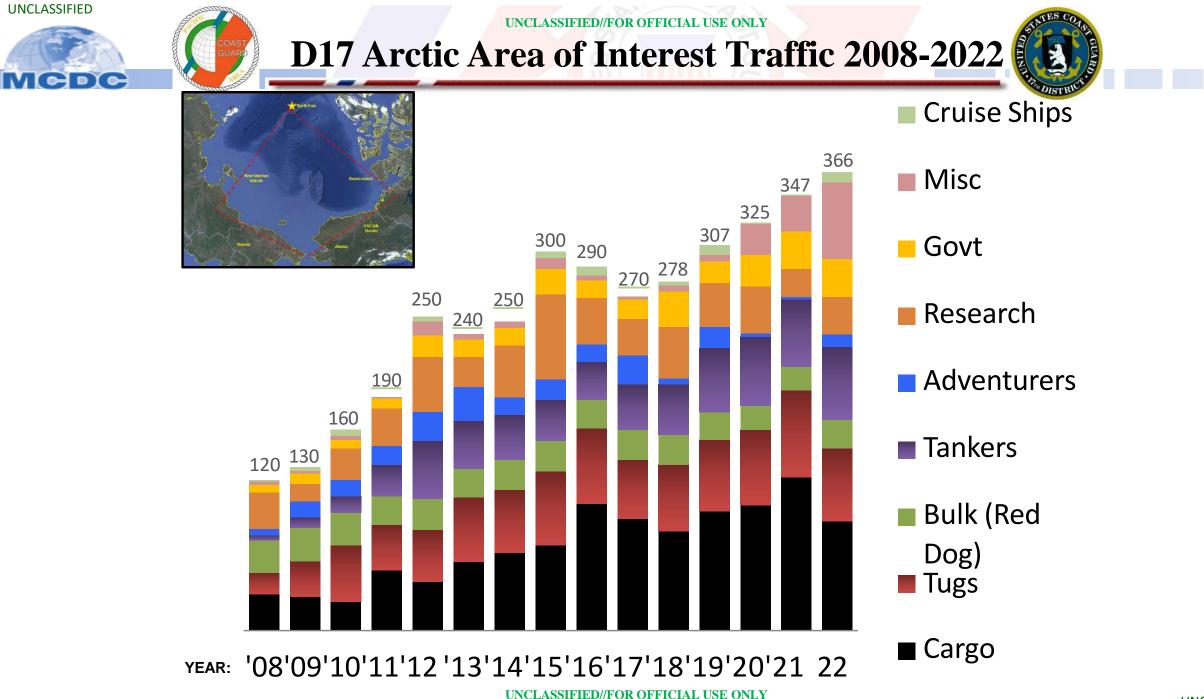
CLIMARCSEC: Background

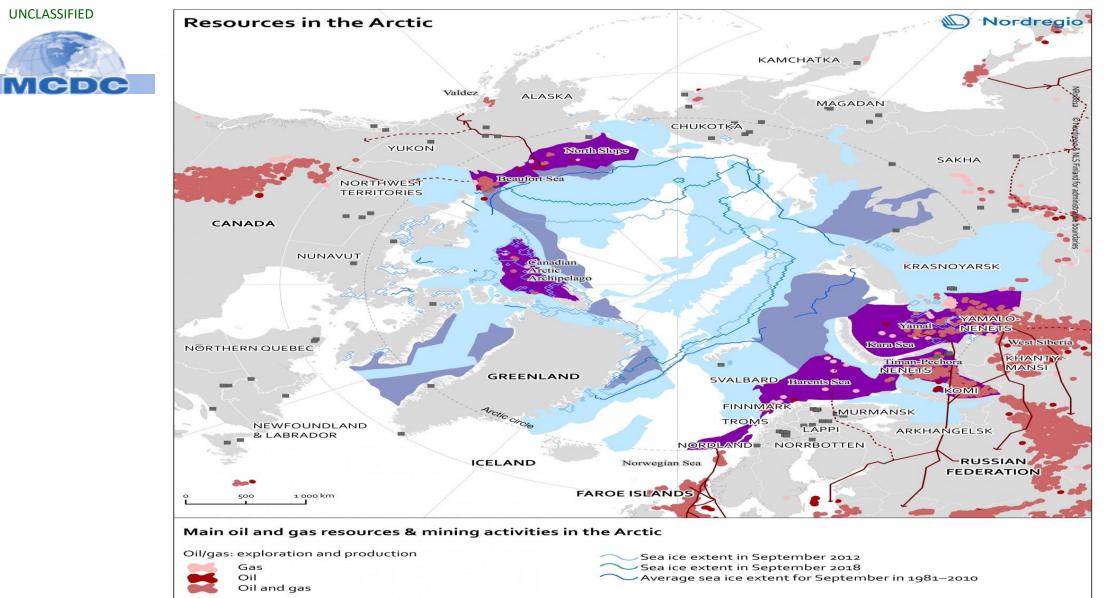
Figure 1. Arctic topographic map [1]


- Climate change is happening at high speed in the Arctic regions, three-four times faster than the global average, resulting in both new risks and new opportunities.
- Climate change opens up the Arctic and gives Arctic and non-Arctic actors easier access, facilitating navigation, resource extraction, fisheries and ecotourism including the risk of hybrid threats.
- The Arctic is presumably emerging as an arena of global rivalry over (political, military and economic) power among: Russia, USA and China.
- Rising temperatures are resulting in alarming reductions in sea ice cover and permafrost thawing as well as extreme weather conditions which directly affect among others also military operations.
- Lack of effective cooperation, security governance structures and coordination.

UNCLASSIFIED




CLIMARCSEC Background: Arctic warming


2020 WAS ARCTIC'S SECOND-WARMEST YEAR ON RECORD

ARCTIC WARMING MORE THAN DOUBLE THE GLOBAL AVERAGE SINCE 2000

Oil/gas: prospective areas and reserves

<50% Probability that at least one accumulation of more than 50 million barrels of oil or 50-99% oil-equivalent gas exists after USGS

100% (including areas north of Arctic Circle)

Main existing oil/gas pipeline (indicative direction)

Main proposed oil/gas pipeline (indicative direction)

Main mining site

UNCLASSIFIED

Regions included:

US - Alaska; CA - Yukon, Northwest Territories, Nunavut, Northern Quebec, Newfoundland & Labrador; GL; IS; FO; NO - Nordland, Troms, Finnmark, Svalbard; SE - Norrbotten; FI - Lappi; RU - Murmansk, Arkhangelsk, Komi, Nenets, Khanty-Mansi, Yamalo-Nenets, Krasnoyarsk, Sakha, Kamchatka, Magadan, Chukotka.

Data source: Nordregio, NSIDC, PRIO, United States Geological Survey USGS and several homepages for oil, gas and mining companies.

- So far, climate change itself has not directly caused any conflicts in the Arctic and is not, and most likely will not be also in the near future, the main driver for emerging geopolitical tensions in the Arctic and beyond.
- But climate change makes military operations even more difficult and costly which however might become more necessary than before in order to meet tensions and potential conflicts from the outside spilling into the Arctic (Climate change as "threat multiplier").
- Also, an increase of SAR (Search&Rescue) Operations with military involvement due to more shipping is likely.

Climate change is opening the Arctic up to competition at a pace that challenges existing governance structures and national military capabilities and reveals capability gaps. The need for military MNF operations in the Arctic is increasing, but at the same time they are becoming more difficult. This increases the need for stronger situational awareness, operational capability, governance/coordination and policy changes.

- More awareness and a better understanding of the sometimes somewhat vague problem of climate change's impact on security and military operations and related challenges.
- Adaptation to new requirements and environments needed.
- More cooperation and coordination:
- More pronounced role for NATO in the Arctic → "NATO and Allies will continue to undertake necessary, calibrated, and coordinated activities, including by exercising relevant plans" (2023 NATO Vilnius Summit Communique).

- Increasing awareness of climate change and climate security in NATO: NATO's Centre of Excellence for Climate Change and Security (CCASCOE) → key unit for expanding cooperative efforts to understand the climate threat, to learn how NATO can promote mitigation and adaptation efforts and how it will affect NATO's training and missions and to understand the strategic environment in which they operate.
- Thorough research through various research institutes in Europe, the USA and Canada and close cooperation between them.

European Conference of Defence and the Environment

ECDE 2024

BRYNJAR ARNFINNSSON Norwegian Defence Research Establishment

FF Norwegian Defence Research Establishment

The Zero Emission Defence – a Review of Climate-Friendly Technology for the Norwegian Armed Forces

Brynjar Arnfinnsson Senior Scientist, FFI

Agenda

- 1. Energy sources and carriers
- 2. Comparison of technologies
- 3. Potential applications
- 4. Can green technologies reduce logistics?
- 5. The way to net zero

Energy sources and carriers

Energy sources

Renewable energy

Hydro Wind

Solar

Nuclear energy

Uranium

Thorium

Energy carriers

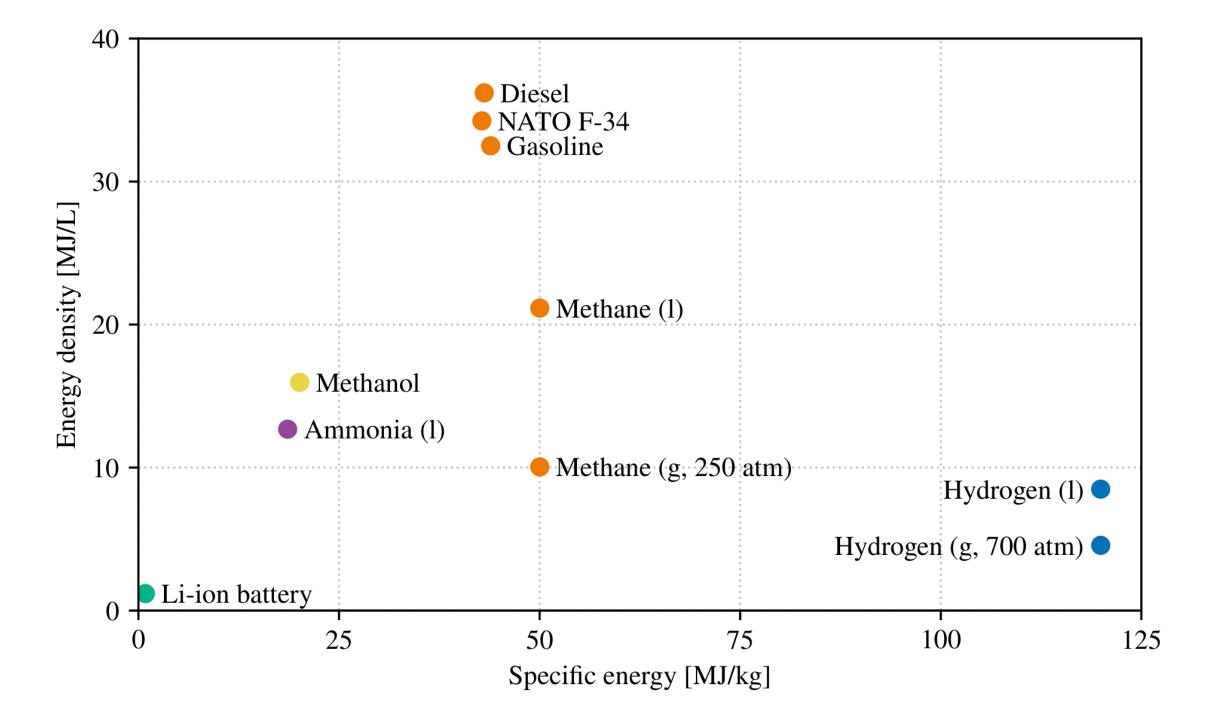
Carbon-free

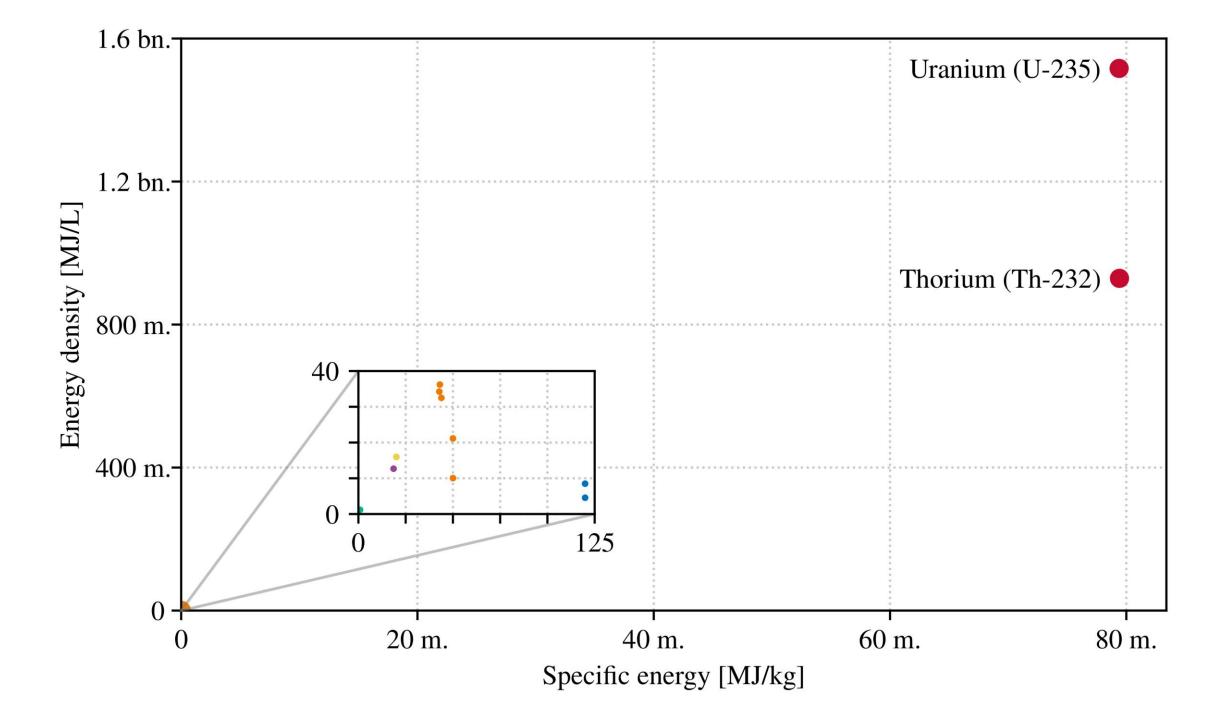
Electricity

Hydrogen

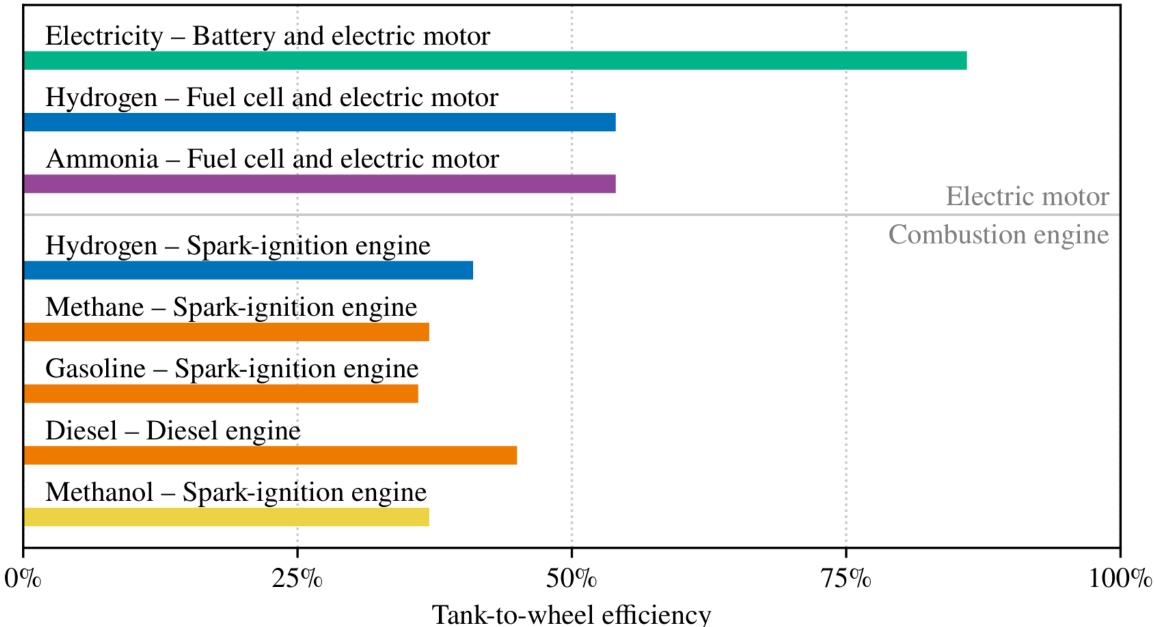
Ammonia

Nuclear energy




Carbon-based – Hydrocarbons

Alcohols


Images: Norwegian Armed Forces

Comparison of technologies

Fuel and drivetrain

	Energy content	Energy efficiency	Greenhouse gas emissions	Costs
Electricity				
Li-ion batteries				
Hydrogen				
E-hydrogen				
Ammonia				
E-ammonia				
Nuclear energy				
U-235				
Hydrocarbons				
Biomethane				
E-methane				
Biodiesel				
E-diesel				
Alcohols				
Biomethanol				
E-methanol				

Color indicators

- Better than fossil diesel
- Equal to fossil diesel
- Slightly worse than fossil diesel
- Much worse than fossil diesel

	Energy content	Energy efficiency	Greenhouse gas emissions	Costs
Electricity				
Li-ion batteries				o o i
Hydrogen				
E-hydrogen				
Ammonia				
E-ammonia				
Nuclear energy				
U-235				
Hydrocarbons				
Biomethane				
E-methane				
Biodiesel				
E-diesel				
Alcohols				
Biomethanol				
E-methanol				

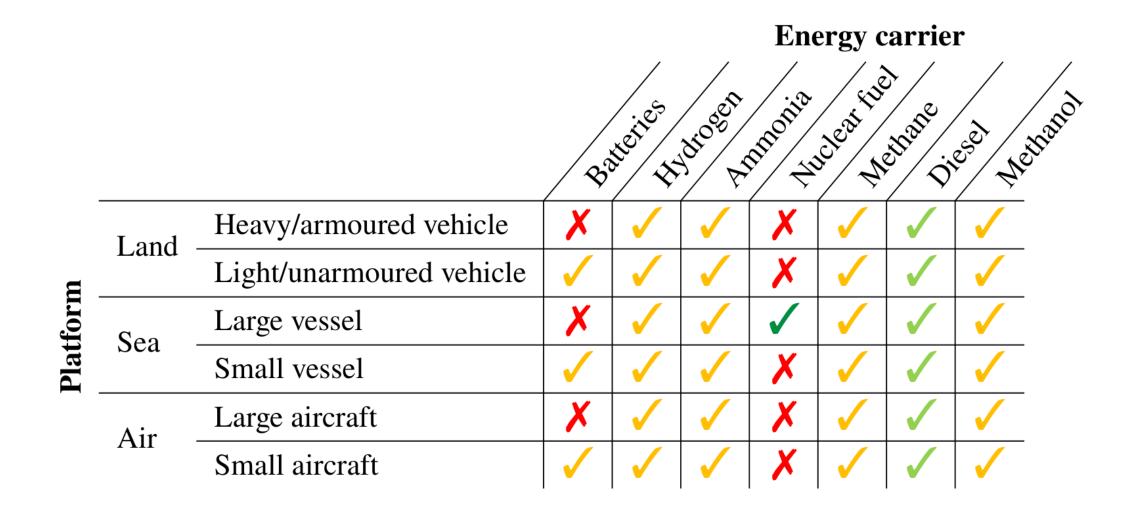
Color indicators

- Better than fossil diesel
- Equal to fossil diesel
- Slightly worse than fossil diesel
- Much worse than fossil diesel

	Energy content	Energy efficiency	Greenhouse gas emissions	Costs	
Electricity					
Li-ion batteries				●o ─i	
Hydrogen					
E-hydrogen	●e ●s	●f <mark>●</mark> c		₽º ●i	
Ammonia					
E-ammonia	•	●f ?c		o o i	
Nuclear energy					
U-235		N/A		●o 🨲i	
Hydrocarbons					
Biomethane	e s	•		₽º ●i	
E-methane	e s	•		o oi	
Biodiesel			•	🥐 o 🛑 i	
E-diesel				o oi	
Alcohols					
Biomethanol	•	?		o oi	
E-methanol		?		o oi	

Color indicators

- Better than fossil diesel
- Equal to fossil diesel
- Slightly worse than fossil diesel
- Much worse than fossil diesel


Comments

- Energy density
- •^f Fuel cell
- Operating

- •^s Specific energy
- •^c Combustion
- •ⁱ Investment
- High uncertainty assessment

Potential applications

			Energy carrier							
	Batteries Androsen Antrophica Alexander Alexan					tranol				
Platform	Land	Heavy/armoured vehicle	X	\checkmark	\checkmark	X			\checkmark	
		Light/unarmoured vehicle	\checkmark	\checkmark	>	×		<		
	Sea	Large vessel	X	\checkmark	\checkmark				\checkmark	
		Small vessel	\checkmark		\checkmark	X			\checkmark	
	Air	Large aircraft	X		\checkmark	X			\checkmark	
		Small aircraft	\checkmark	\checkmark	\checkmark	X			\checkmark	

What about energy for operating bases and military infrastructure?

Can zero emission technology reduce logistics?

«The defense that first manages to crack the code – on how to become less dependent on fossil logistics – they have a great advantage.»

> Eirik Kristoffersen Norwegian Chief of Defence 25th Nov. 2022

Photo: FFI

Photo: Johan Ludvig Holst / Forsvaret

a the second and a second

-25

tind

The way to net zero

The way towards net zero for the Armed Forces

- Biofuels and e-fuels
- Dual-fuel
- Nuclear power
- Renewable energy
- Batteries

"The Armed Forces cannot be the only remaining fossil sector in a society which in the future will be fossil-free. We must reconcile the need to have a strong defense with a green defense."

> Jens Stoltenberg Secretary General of NATO 26th June 2023

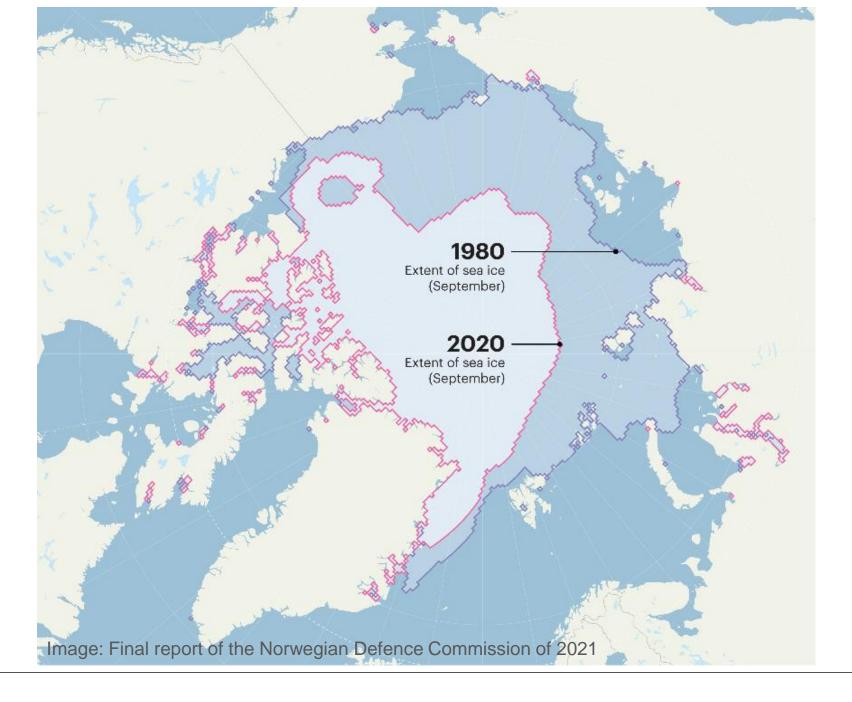
Photo: Stian Lysberg Solum / NTB

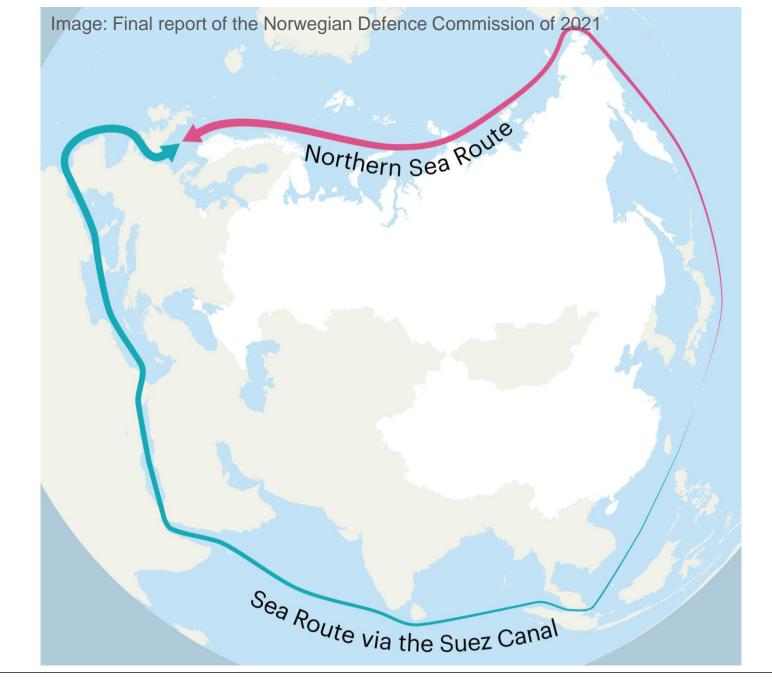
Questions?

Contact: Brynjar.Arnfinnsson@ffi.no **European Conference of Defence and the Environment**

ECDE 2024

MARIUS PEDERSEN Norwegian Defence Research Establishment




Research Establishment

National and International Security in the Arctic

Norwegian Perspectives

Marius N. Pedersen

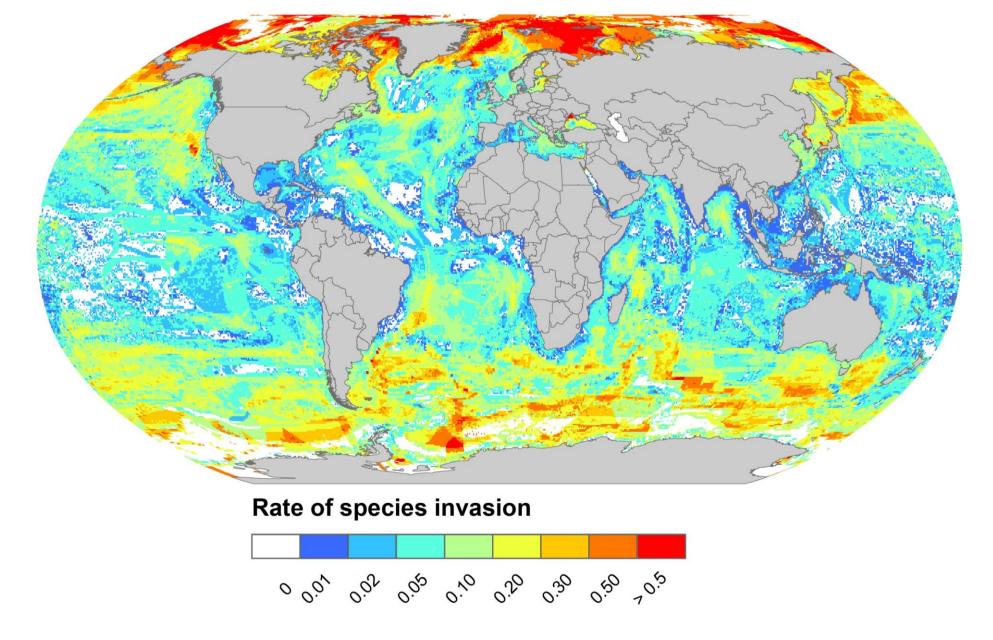


Image: William Chung et al., ICES Journal of Marine Sciences 72, 2016

Arctic Security Landscape

- Great deal of alarmism
- «Race for the Arctic»
 - Resources
 - Trade routes
 - Ice breakers
- Consequences of militarisation and securitisation
- Less cooperation and more uncertainty
 - Militarisation
 - Securitisation

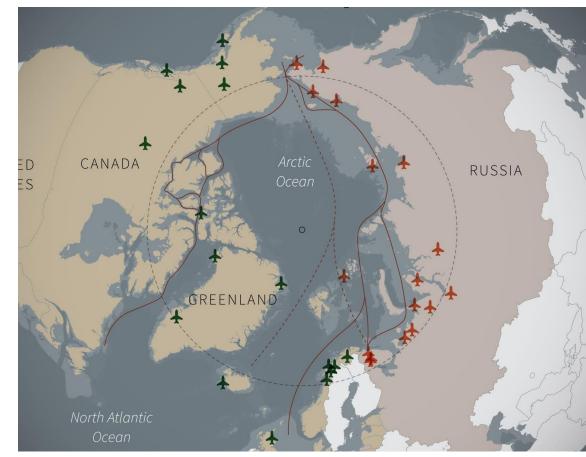


Image: Vijdan Mohammad Kawoosa / High North News

Impacts on the Maritime Domain

- Greater maritime access
- More open sea
 - Often poorly charted
 - Even uncharted
- Increased human activity
 - Military and commercial
 - Cruise traffic is a particular challenge
- New actors with limited Arctic experience
- Uncertainty about treaties

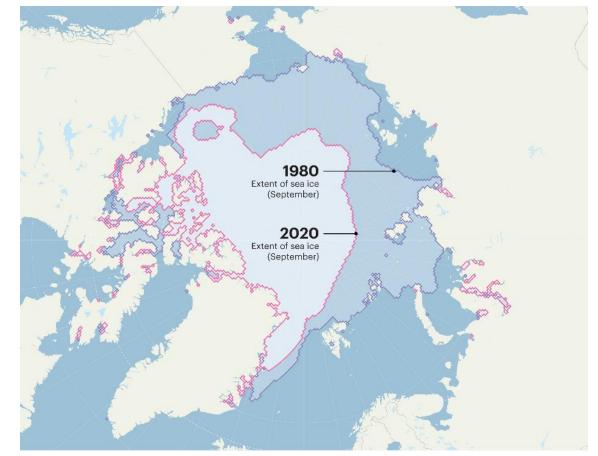


Image: Final report of the Norwegian Defence Commission of 2021

Impacts on the Maritime Domain

- The contentious Svalbard Treaty
- United Nations Convention on the Law of the Sea

 Article 234:

"Coastal States have the **right to adopt and enforce non-discriminatory laws and regulations** for the prevention, reduction and control of marine pollution from vessels in ice-covered areas within the limits of the exclusive economic zone, where **particularly severe climatic conditions and the presence of ice covering such areas for most of the year** create obstructions or exceptional hazards to navigation, and pollution of the marine environment could cause major harm to or irreversible disturbance of the ecological balance. Such laws and regulations shall have due regard to navigation and the protection and preservation of the marine environment based on the best available scientific evidence."

Image: Archive of the Governor of Svalbard

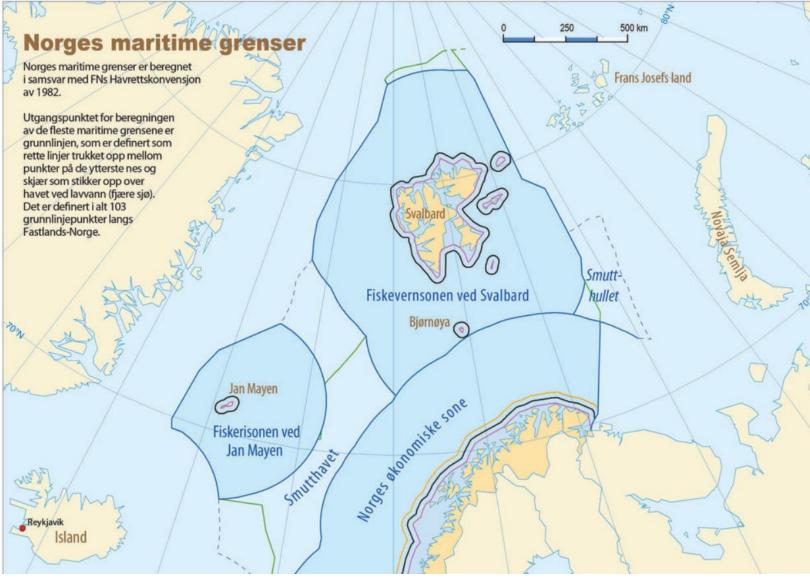
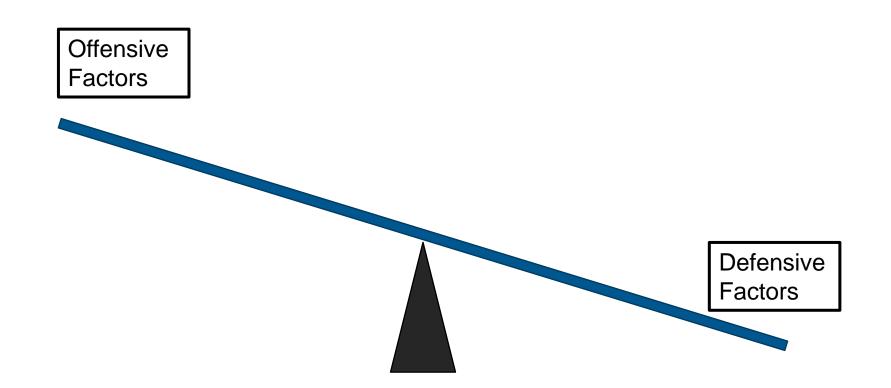


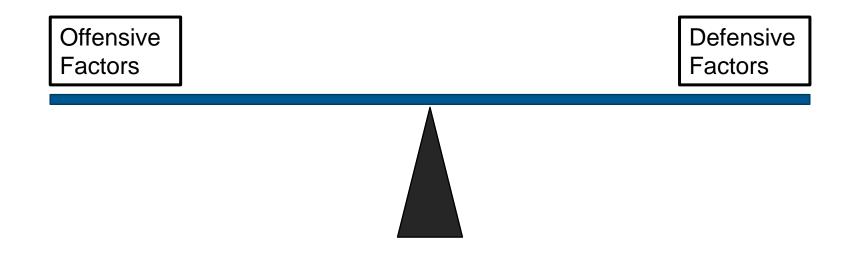
Image: The Norwegian Mapping Authority

Impacts on the Land Domain

"Weaponisation of migration seeks to use the destabilising potential in a high number of migrants in a short time period to provoke desired political change in a target state"

- Several recent examples
 - Russia against Finland and Norway in 2015
 - Belarus against Poland and Latvia during the winter of 2021/22
 - Russia against Finland and Norway 2023
- Climate refugees will offer Russia new opportunities to pressure hostile states


Image: Kancelaria Premiera (CC BY-NC-ND 2.0)


Security Consequences

- Increases risk of *security dilemmas*
- Tilting the offence-defence balance
- The Arctic has been a clearly defence-oriented region
- Climate change may tilt the scales towards balance

The Offence-Defence Balance

	Offensive advantage	Defensive advantage
Offensive posture not distinguishable from defensive posture	(1) Doubly dangerous	(2) Security dilemma, but security requirements may be compatible
Offensive posture distinguishable from defensive posture	(3) No security dilemma, but aggression possible. Status quo states may follow different strategies than aggressors. Warning given.	(4) Doubly safe

European Conference of Defence and the Environment

ECDE 2024

SONJA BERLIJN KTH Royal Institute of Technology

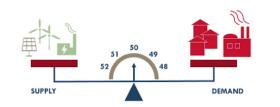
WHEN TRUST MATTERS

The future electricity system: A problem solver or a problem creator?

Prof.dr.techn.ir. Sonja Monica Berlijn MBA Tuesday 12 June 2024 prof.Sonja.Berlijn sonja-monica-berlijn-144ab1a/ @sonja_berlijn prof. Sonja Berlijn

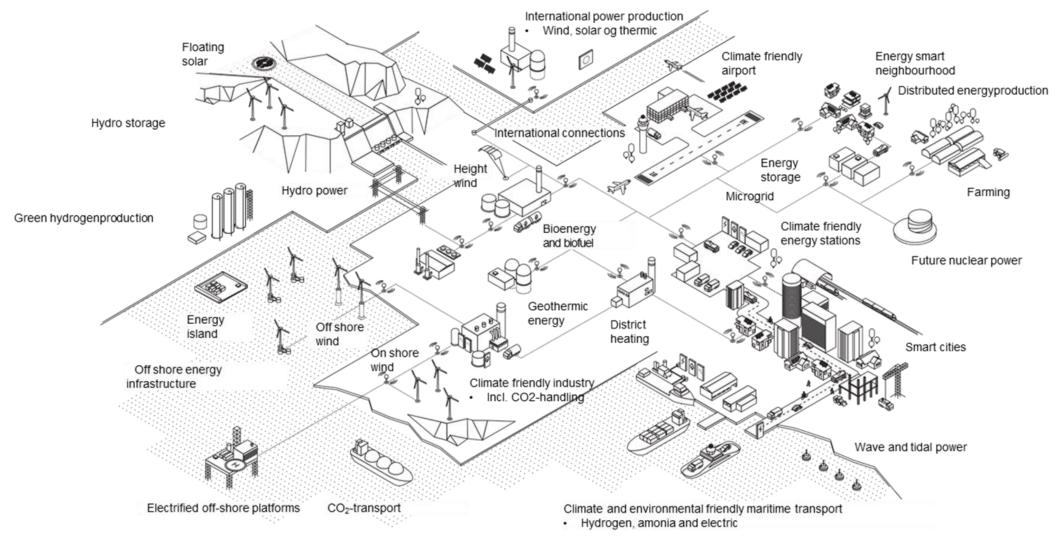
Electricity system is rapidly changing

- Energy transition is going faster than expected
 - Electricity demand is increasing significant
 - New production is needed
 - Both new types of demand and production arise
 - Electricity becomes more and more relevant for society
- The electricity system needs to facilitate these changes
- The future electricity system solves climate challenges but introduces some new challenges

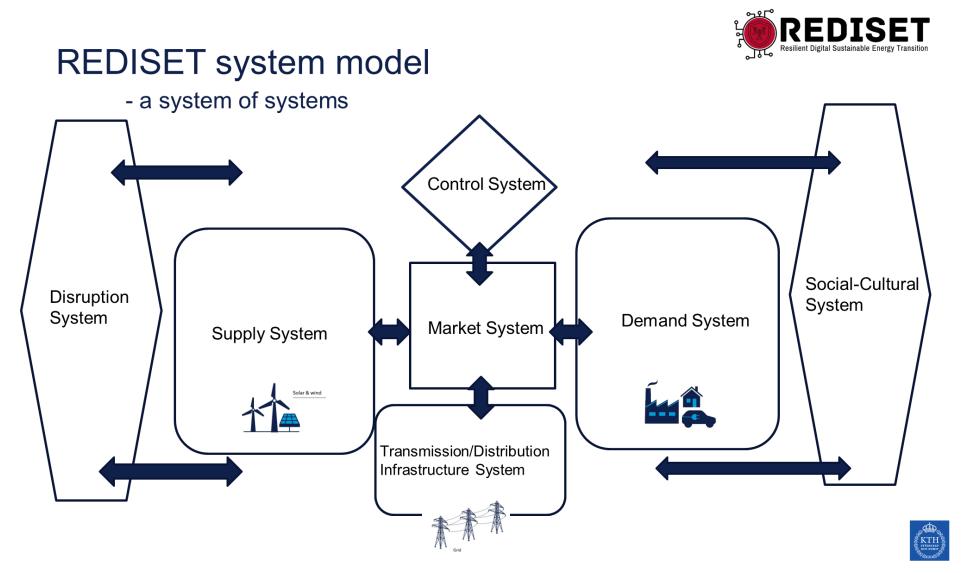


A simple Electricity System

Every electrical power system has three major components


- generation: source of power, ideally with a specified voltage and frequency
- transmission system [transformers, lines, etc.]: transmits power; ideally as a perfect conductor
- load: consumes power; ideally with a constant resistive value

A glimpse of the future electricity system


Electricity will be the main energy source

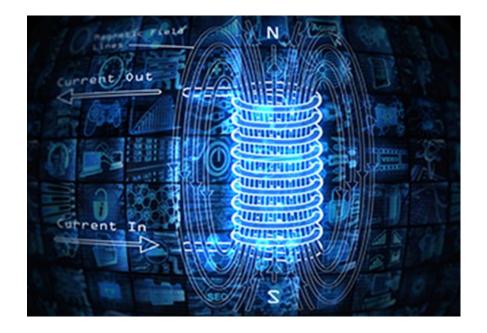
- The future electricity system has a large impact on the functioning of society and total defence
 - Transport, communication, information, food, water, payment, is there anything left that does function without electricity?
- The electricity system is under pressure and its vulnerability is increasing
 - More digital solutions are needed to solve the challenges in the electricity system
 - The build-in redundancy might be decreasing
 - It is too complex for even insiders to understand

How can we find weaknesses in a complex electricity system?

DNV

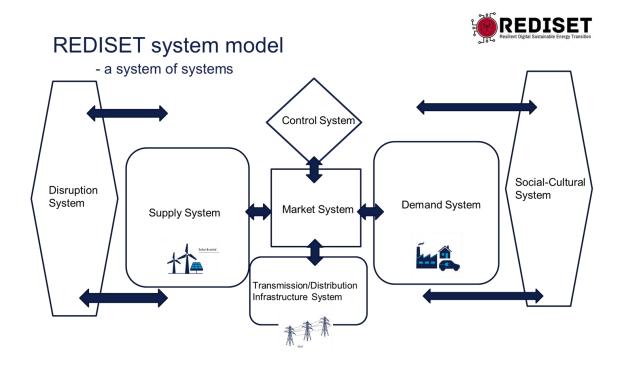
Creative ways to attack the future electricity system

- Market system
- •Weather data
- False sensor data
- Disinformation via social media



- Attack a small player in the electricity system
- Certain components
- •Off-shore grid connection

Electricity system has become a complex cyber-physical system and defending it becomes more complex and expensive


- Physical attacks
 - Right now there is a redundancy in the grid, this redundancy is shrinking
 - Longer lead times for new equipment (3-7 years)
- Cyber attacks
 - Indirect via administrative systems
 - Disrupting data
- Social attacks
 - Consumers, e.g. EV-users
 - Critical persons on critical positions

What are the highest risks and how to mitigate them?

- What are the highest risks?
 - Preliminary research has shown that there are some unexpected items
 - We can learn from on-going crisis
- How to mitigate the risks?
 - Can micro-grids be a solution?
 - Can decentralisation help?
 - Shall control in crisis be simplified?
- What are acceptable costs?
 - Redundant and resilient grid is maybe too expensive?

Problem solver or problem creator?

- The electricity system is the back-bone of the future energy system
- It is expected that the grid will more than double in length and the need for electricity will increase with a factor of 2-7
- The pace of the increase in need is higher than the increase of new grid capacity congestion
- The congestion can be solved with digitalisation
- The new electricity system solves our dependence on gas and oil and reduces CO₂ emission
- 'There is no transition without transmission'

Problem solver or problem creator?

- More and more is depending on electricity
- The electricity system will be connected to other systems (sector coupling)
- The electricity system is very complex and even for in-siders difficult to understand
- A lot of parties will be active contributors to the electricity system
- The future system will be highly digitalized
- There might be less margins available in the transition period
- The digitalization of the electricity system leads to new vulnerabilities
- Cyber physical security and cyber physical resilience are new areas of attention and research

WHEN TRUST MATTERS

Thank you for your attention

Sonja.monica.berlijn@dnv.com

www.dnv.com

DNV

188 DNV ©